Coordinatore | STICHTING VU-VUMC
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Netherlands [NL] |
Totale costo | 2˙498˙736 € |
EC contributo | 2˙498˙736 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2013-ADG |
Funding Scheme | ERC-AG |
Anno di inizio | 2014 |
Periodo (anno-mese-giorno) | 2014-02-01 - 2019-01-31 |
# | ||||
---|---|---|---|---|
1 |
STICHTING VU-VUMC
Organization address
address: DE BOELELAAN 1105 contact info |
NL (AMSTERDAM) | hostInstitution | 2˙498˙736.00 |
2 |
STICHTING VU-VUMC
Organization address
address: DE BOELELAAN 1105 contact info |
NL (AMSTERDAM) | hostInstitution | 2˙498˙736.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'There is an urgent need to develop vaccines for the induction of CD8 T-cell immunity to treat cancer and infectious diseases. Dendritic Cells (DC) have shown potential to induce antigen specific CD8 T-cell responses with the help of CD4 T cells, yet the efficacy by which the induction is achieved still has its limitations. The main challenge is: (a) to increase targeting efficacy to the complete repertoire of DC subsets; (b) to trigger T-cell responses by the DC that is powerful enough to eliminate a tumour (c) to implement novel human read-out systems, that mimic he human body response to evaluate vaccine efficacy.
The aim of this research project is to develop new glycan-based nanomedicines targeted to DC to induce powerful T-cell responses. Within the scope of this research project these new glycan-based nanomedicines will be tested to (i) trigger a strong T-cell response to pathogens, (ii) induce a powerful and adequate T-cell response to self antigen in a tumour induced immune suppressive environment and (iii) render fundamental insights to establish a vaccine platform relevant for the treatment of cancer and infectious diseases.
GlycoTreat employs an unconventional, novel glycan biotechnology approach to target a multitude of DC subsets in the human skin to validate the groundbreaking hypothesis that the local administration and molecular size and glycan valency of the targeting compound affect the efficiency of the T-cell stimulating vaccine. This research project joins the chemical design of glyco-nanomedical vaccines with immunological outcomes in our advanced in-vitro, in-situ human skin and in-vivo mouse DC model systems. While crossing the established disciplinary boundaries between chemistry, biology and medicine, Prof. van Kooyk will generate a new field of expertise in vaccine development applied in the field of cancer treatment.'