MOQUACINO

Memory-enabled Optical Quantum Communications and Information Networks

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙738˙405 €
 EC contributo 1˙738˙404 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2019-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) hostInstitution 1˙738˙404.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Prof.
Nome: Ian
Cognome: Walmsley
Email: send email
Telefono: +44 1865 280513
Fax: +44 1865 272400

UK (OXFORD) hostInstitution 1˙738˙404.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

network    node    simulation    photon    light    particle    photonic    regime    quantum    interactions    operations    physics    nonlinear   

 Obiettivo del progetto (Objective)

'The primary objective of this proposal is to build a large-scale photonic quantum network in order to enter a new and different regime of macroscopic quantum behaviour for light. We intend to implement a network of sufficient scale that the behaviour of the system is uncomputable, and that new physics will emerge from the study of its dynamics that will inform research in a number of fields dealing with complex systems, from fundamental physics to biology. This network will also enable new modes of quantum communications, sensing, simulation and computation that go well beyond anything that is possible using classical physics. Specifically we shall develop a truly scalable approach to building both linear and nonlinear photonic networks, and construct a 20-node, 20-qubit, 20-particle loss-tolerant photonic network that operates palpably beyond classical boundaries. It has not proven possible to break through into a new regime of complexity to date because of the intrinsically probabilistic character of the feasible network operations. In this proposal, we overcome this bottleneck. Our approach will integrate robust, simple, broadband photonic quantum memories together with novel pure-state light sources fabricated in precise 3-D photonic structures, coupled to integrated, highly-efficient photon-number-resolving detectors. Deterministic photon-photon interactions will be engendered either by measurement and storage or by nonlinear interactions in the memory made possible by coherent quantum feedback control. This will deliver a multi-node array of synchronized conditional quantum operations, novel quantum light-matter interactions and distillation of high-quality entangled states. The outcome of this project will be a viable means to explore new regimes of many-body quantum physics, with impact on information processing, including multi-particle quantum simulation, multiparty quantum repeaters, multimode quantum sensors and elementary quantum computing.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

TOPOLECTRICS (2013)

Emergence of Topological Phases from Electronic Interactions

Read More  

MINT (2013)

From micro-scale interaction networks to ecosystem-level processes in microbial communities

Read More  

SIGNAL2THEHUB (2013)

Integrin: signalling from the tail and the hub

Read More