CO OXIDATION

A multiscale theoretical investigation of carbon monoxide oxidation on gold nanomaterials for energy and environmental applications

 Coordinatore FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS 

 Organization address address: N PLASTIRA STR 100
city: HERAKLION
postcode: 70013

contact info
Titolo: Ms.
Nome: Zinovia
Cognome: Papatheodorou
Email: send email
Telefono: 302810000000
Fax: 302810000000

 Nazionalità Coordinatore Greece [EL]
 Totale costo 210˙567 €
 EC contributo 210˙567 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-4-1-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-04-01   -   2011-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS

 Organization address address: N PLASTIRA STR 100
city: HERAKLION
postcode: 70013

contact info
Titolo: Ms.
Nome: Zinovia
Cognome: Papatheodorou
Email: send email
Telefono: 302810000000
Fax: 302810000000

EL (HERAKLION) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

multiscale    fuel    purification    co    nanoparticles    au    energy    oxidation    reaction    related    oxides    hydrogen    cells    certain    exceptional   

 Obiettivo del progetto (Objective)

'A multiscale theoretical investigation of the CO oxidation on Au nanostructures supported on various oxides is proposed. Since Haruta’s 1987 discovery of the exceptional activity of gold (Au) nanoparticles (2-5 nm in diameter), many groups have verified this exceptional activity towards many reactions when supported on certain oxides. For example, the Au/TiO2 system exhibits unprecedented activity in low temperature CO oxidation via O2. CO oxidation is of paramount importance not only in automotive catalysis but also in modern energy related applications including hydrogen production via the water-gas shift reaction with steam from fossil and renewable fuels, hydrogen purification via selective oxidation of hydrogen with oxygen, fuel cells, etc. Although the high activity of Au is beyond any doubt, there is still much debate on the nature of active sites and the underlying reaction mechanisms. Herein, a multiscale bottom-up approach will be developed that cuts among “ab-initio” and semi-empirical (free-energy related) techniques and integrates this information into first-principles Monte Carlo kinetics simulations in order to explain the exceptional reactivity of Au nanoparticles on certain supports, explore its electronic properties and eventually pave the way for design of efficient catalysts for hydrogen purification and fuel cells applications.'

Altri progetti dello stesso programma (FP7-PEOPLE)

IN-SMC (2010)

SMOOTH MUSCLE CELL TRANSCRIPTOMICS AND INFECTIOUS AGENTS

Read More  

MEDINS (2014)

"Mediterranean insularities and ‘miniature continents’: Space, landscape and agriculture in early modern Cyprus and Crete."

Read More  

AT THE MOVIES (2011)

Researchers at the Movies

Read More