HAMILTONIANPDES

Hamiltonian Partial Differential Equations: new connections between dynamical systems and PDEs with small divisors phenomena

 Coordinatore UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Italy [IT]
 Totale costo 400˙000 €
 EC contributo 400˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-07-01   -   2012-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II.

 Organization address address: Corso Umberto I 40
city: NAPOLI
postcode: 80138

contact info
Titolo: Dr.
Nome: Immacolata
Cognome: Diez
Email: send email
Telefono: +39 081 675 727
Fax: +39 081 766 2106

IT (NAPOLI) hostInstitution 0.00
2    UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II.

 Organization address address: Corso Umberto I 40
city: NAPOLI
postcode: 80138

contact info
Titolo: Prof.
Nome: Massimiliano
Cognome: Berti
Email: send email
Telefono: -675738
Fax: -7662148

IT (NAPOLI) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

equations    theory    function    partial    implicit    nash    hire    point    post    dynamical    experts    moser    differential    doc    years    group    pdes    hamiltonian    plan   

 Obiettivo del progetto (Objective)

'The aim of this project of 4 years is to create a research group on Hamiltonian Partial Differential Equations (PDEs) after my new arrival in the University Federico II of Naples as Associate Professor in november 2005. I plan to hire 2 post doc fellows and also to organize advanced research Schools and Workshops. I plan to develop a research group on Hamiltonian PDEs mainly studied by the point of view of 'Dynamical Systems Philosophy' and of 'Calculus of Variations'. Indeed the analysis of the main structures of an infinite dimensional phase space such as periodic orbits, embedded invariant tori, center manifolds, etc., is an essential change of paradigm in the study of hyperbolic equations which has been recently very fruitful. In the last years the principal investigator has developed a net of high level international collaborations and, also with some of his PhD and Post doc students, has obtained many important results via a mixed combination of Critical Point Theory, Nash-Moser Implicit Function Theorems, Number Theory, Dynamical Systems techniques and Bifurcation Theory. This has allowed to solve open problems in the fields, opening new perspectives. With the ERC-Starting Grant we plan to hire first class experts in the above fields, and to collaborate for long periods of joint research with leading experts in the world. Keywords: Hamiltonian Partial Differential Equations, Small divisors problem, Nash-Moser Implicit function theory Variational methods.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NEUROCOMMUNICATION (2013)

The Molecular Communication Mechanism of Motor Neuron Survival and Synapse Maintenance

Read More  

MINOS (2010)

Microbial Network Organisation

Read More  

ULTRAPHASE (2012)

Ultrafast Quantum Physics in Amplitude and Phase

Read More