Coordinatore | UNIVERSITAET BREMEN
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 1˙536˙120 € |
EC contributo | 1˙536˙120 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2007-StG |
Funding Scheme | ERC-SG |
Anno di inizio | 2009 |
Periodo (anno-mese-giorno) | 2009-01-01 - 2013-12-31 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITAET BREMEN
Organization address
address: Bibliothekstrasse 1 contact info |
DE (BREMEN) | hostInstitution | 0.00 |
2 |
UNIVERSITAET BREMEN
Organization address
address: Bibliothekstrasse 1 contact info |
DE (BREMEN) | hostInstitution | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'In the last decades, Materials Sciences and Life Sciences, two highly dynamically evolving and interdisciplinary research areas, have been influencing natural and engineering sciences significantly, creating new challenges and opportunities. A prime example for an increasing synergetic overlap of Materials and Life Sciences is provided by biomedical and bioengineering applications, which are of great academic, but also of steadily increasing societal and commercial interest. Bridging the traditional borders of disciplinary thinking in these areas has become one of today’s most challenging tasks for scientists. One group of key materials that are of great importance to biomedical engineering and bioengineering are advanced oxide and non-oxide ceramics with specific functionalities towards biological environments, so-called Bioceramics. The interplay at the interface of ceramics-protein-cells/bacteria is very complex and requires multiscale and interdisciplinary approaches. This expertise, that is under continuous development in my Bioceramics group, encompasses materials processing, shaping, surface functionalisation and cells/bacteria evaluation at the same time. The comprehensive research environment and expertise provides a unique opportunity to engineer materials/surfaces with immediate subsequent biological evaluation in order to achieve an extremely short development time. A centre of focus is the contribution of electrostatic and hydrophilic/hydrophobic interactions to the overall biocompatibility and -activity. The proposed research project includes four closely interrelated subprojects, addressing the following topics: “Interaction of surface functionalised ceramic particles with proteins”, “Cytotoxicity of functionalised oxide particles”, “Fabrication and testing of functionalised porous Al2O3 as filters for water cleaning and bioengineering applications” and “Novel functional scaffold composites for bone tissue engineering”.'
"Contexts of Opportunity: Explaining Cross-National Variation in the Links Between Childhood Disadvantage, Young Adult Demographic Behaviour and Later-Life Outcomes"
Read More"Multi-scale, Multi-physics MOdelling and COmputation of magneto-sensitive POLYmeric materials"
Read More