ANGIODEL

Influence of delays on the models of angiogenesis process and immunotherapy of cancer

 Coordinatore UNIWERSYTET WARSZAWSKI 

 Organization address address: Krakowskie Przedmiescie 26/28
city: WARSAW
postcode: 927

contact info
Titolo: Dr.
Nome: Urszula
Cognome: Forys
Email: send email
Telefono: +48 22 5544567
Fax: +48 22 5544301

 Nazionalità Coordinatore Poland [PL]
 Totale costo 45˙000 €
 EC contributo 45˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-ERG-2008
 Funding Scheme MC-ERG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-11-01   -   2011-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIWERSYTET WARSZAWSKI

 Organization address address: Krakowskie Przedmiescie 26/28
city: WARSAW
postcode: 927

contact info
Titolo: Dr.
Nome: Urszula
Cognome: Forys
Email: send email
Telefono: +48 22 5544567
Fax: +48 22 5544301

PL (WARSAW) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

angiogenesis    point    mathematical    solutions    models    cancer    tumour    view    medical    immune    delays    delay    equations    influence    differential    describing    immunotherapy    model    time    dynamics   

 Obiettivo del progetto (Objective)

'Tumour growth, dynamics and interactions with an immune system are very important processes from medical point of view and can be also considered as a topic of mathematical modelling and analysis. We would like to focus on the models of tumour angiogenesis process and immunotherapy of cancer known from the literature and study the influence of time delays on the dynamics of these models solutions. It is well-known that the signaling pathways can be modelled using time delays. Therefore, the models described by systems of ordinary differential equations can be modified to the systems of delay differential equations. Such modifications have been considered for example in the case of Hahnfeldt et al. model of angiogenesis process which is the most accepted model of this process. Immune processes are also considered as delayed with respect to the stimuli. The first model which reflects this effect was proposed by G.I. Marchuk (1980). At present there arises many models describing different aspects of anti-tumour immunity and immunotherapy of cancer. Within the project we will study the influence of time delays on the dynamics of solutions to mathematical systems of differential equations describing tumour angiogenesis and immunotherapy of cancer focusing on the models with at least two delays. From the mathematical point of view the dynamics of systems with several delays is not as well-known as in the case of one discrete delay and such analysis is a challenging problem and can bring also some insight to the medical knowledge and treatment of cancer.'

Altri progetti dello stesso programma (FP7-PEOPLE)

FASTELECTRONSOPTICS (2014)

Optics of Relativistic Electrons in Dense Plasmas for High Energy Density Physics Applications

Read More  

EMOMFSSA (2010)

Extended metal-organic materials formed via subcomponent self-assembly

Read More  

NANOMAG (2012)

Magnetic Nanoparticles and Thin Films for Spintronic Applications and High Performance Permanent Magnets

Read More