BRACHYTEM

Identification of molecular mechanisms involved in temperature perception and signalling in Brachypodium

 Coordinatore JOHN INNES CENTRE 

 Organization address address: "Norwich Research Park, Colney"
city: NORWICH
postcode: NR4 7UH

contact info
Titolo: Dr.
Nome: Mary
Cognome: Anderson
Email: send email
Telefono: +44 1603 450244
Fax: +44 1603 450887

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 177˙740 €
 EC contributo 177˙740 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-2-1-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-08-01   -   2010-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    JOHN INNES CENTRE

 Organization address address: "Norwich Research Park, Colney"
city: NORWICH
postcode: NR4 7UH

contact info
Titolo: Dr.
Nome: Mary
Cognome: Anderson
Email: send email
Telefono: +44 1603 450244
Fax: +44 1603 450887

UK (NORWICH) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

neutron    pathway    screening    temperature    genome    ga    lines    fast    sensing    gene    components    plant    genetic    perception    tiling    deletion    responses    brachypodium    della    ambient    molecular    signalling   

 Obiettivo del progetto (Objective)

'Being sessile and unable to regulate their internal temperature, plants are exposed to large variations in ambient temperature during day-night cycles and seasonal changes. It is clear that plant development and growth are closely related to thermal conditions, but the molecular mechanisms involved in temperature sensing are not understood. Plant responses to changing ambient temperature are becoming increasingly important from an applied perspective, due to the projected 2.0-5.4°C global warming by the end of this century. To understand plant responses to temperature, we need to resolve the molecular components involved in temperature perception and signalling. I will use a multidisciplinary approach combining molecular genetics and growth and developmental analysis to understand temperature perception and responses in the emerging model monocot system Brachypodium distachyon. The results will be highly relevant for other temperate grasses and cereals, due to their close phylogenetic relationship. First, the temperature effect on Brachypodium leaf meristem functioning will be quantified using kinematic methods, making use of new reporter lines for meristematic activity. Second, the genetic network involved in correct ambient temperature sensing and signalling will be identified by extensive forward genetic screening based on LUC reporters and fast neutron deletion mutant populations. The gene mapping will be strongly enhanced using whole genome tiling arrays. The GA/DELLA pathway has been shown to restrain growth in adverse conditions in Arabidopsis. The third objective of this proposal is to identify components of the GA/DELLA pathway in Brachypodium in a reverse genetic approach by screening the genomic DNA bank of fast neutron deletion lines for the predicted DELLA gene(s), and by a complementary forward genetic screen. Genes will be mapped by whole genome tiling array hybridisations, and their role in growth responses to temperature will be assessed.'

Altri progetti dello stesso programma (FP7-PEOPLE)

BARLEYNONHOST (2012)

GENETICS BASIS OF THE NONHOST RESISTANCE TO POWDERY MILDEWS AND RUSTS IN BARLEY

Read More  

SCIENCE-PAMIR (2011)

"Marie Curie Researchers Symposium „SCIENCE – Passion, Mission, Responsibility”"

Read More  

ANCEPS (2010)

evolutionAry traNsitions: Chemical Ecology of Parasitic Societies

Read More