CP-SMARTSURFACES

Towards better point of care devices: Conducting polymers as smart surfaces in biosensors

 Coordinatore UNIVERSITY OF SURREY 

 Organization address address: Stag Hill
city: GUILDFORD
postcode: GU2 7XH

contact info
Titolo: Ms.
Nome: Maria
Cognome: Sega-Buhalis
Email: send email
Telefono: +44 1483 683498
Fax: +44 1483 683791

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-4-3-IRG
 Funding Scheme MC-IRG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-05-01   -   2015-07-06

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF SURREY

 Organization address address: Stag Hill
city: GUILDFORD
postcode: GU2 7XH

contact info
Titolo: Ms.
Nome: Maria
Cognome: Sega-Buhalis
Email: send email
Telefono: +44 1483 683498
Fax: +44 1483 683791

UK (GUILDFORD) coordinator 0.00
2    DUBLIN CITY UNIVERSITY

 Organization address address: Glasnevin
city: DUBLIN
postcode: 9

contact info
Titolo: Prof.
Nome: Richard
Cognome: O'kennedy
Email: send email
Telefono: +353 1 7005319
Fax: +353 1 7005314

IE (DUBLIN) participant 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

cp    psa    easily    prostate    nature    polymers    years    technological    nanostructured    shorter    nsb    times    binding    point    scientists    immobilisation    advantages    immobilising    switched    electrical    detection    bio    significance    single    considerable    ago    chemical    material    electrochemically    cps    analytical    performance    imagine    simple    device    diagnostic    antibodies    biosensors    electronic    care    provides    create    electrochemical    transducer    smartsurfaces    conducting    biosensor    dynamic    gained    cancer    polymer    platform    chemistry    surface    films   

 Obiettivo del progetto (Objective)

'Discovered just over 20 years ago, conducting polymers (CPs) have gained considerable attention because of their unique chemical and electronic conducting properties. As a result they have various (bio)analytical and technological applications. CPs are easily synthesised, both chemically and electrochemically under mild conditions, opening up vast possibilities for the immobilisation of biomolecules. Immobilisation of antibodies by entrapment within films or by covalent binding on these films permits the straightforward fabrication of biosensors. In electrochemical biosensors, non-specific binding (NSB) of molecules, e.g. proteins in serum, can occur, lowering overall device performance. In the past, surface chemistry has been employed to prohibit NSB on electrodes with sites that do not have antibodies attached. This surface chemistry however, impairs device performance. CPs have inherent dynamic surface properties that can be easily switched upon the application of an appropriate electrical potential. Their ability to be switched between different oxidation states and the associated switch in properties such as doping level, resistance and surface wettability can be controlled by changing the electrical potential resulting in reversible switching. Routes to nano-dimensional CPs, exhibiting markedly improved properties from those of the bulk materials, have been recently developed. We therefore propose to exploit the dynamic chemical nature of CPs to inhibit NSB in electrochemical bio-assays and demonstrate the efficacy of this approach using a simple nanostructured electrochemical prostate cancer diagnostic platform made from conducting polymers. One can imagine the significance of a biosensor that provides increases in performance and shorter detection times, since the immobilising platform, transducer and dynamic surface control are implemented within a single material.'

Introduzione (Teaser)

EU-funded scientists are using conducting polymers to create a simple nanostructured electrochemical prostate cancer diagnostic platform.

Descrizione progetto (Article)

Since their discovery just over 20 years ago, conducting polymers (CPs) have gained considerable attention because of their unique chemical and electronic conducting properties. As a result they have various (bio)analytical and technological applications, and scientists now hope to exploit their dynamic chemical nature to help create a simple nanostructured electrochemical prostate cancer diagnostic platform.

The 'Towards better point of care devices: conducting polymers as smart surfaces in biosensors' (CP-Smartsurfaces) researchers highlighted the potential advantages of this technology for cancer detection, commenting that 'one can imagine the significance of a biosensor that provides increases in performance and shorter detection times, since the immobilising platform, transducer and dynamic surface control are implemented within a single material'.

They explained that 'low-cost and easy-to-use tests need to be developed for use in a community setting as an alternative to expensive laboratory-based anti-prostate specific antigen (PSA) antibody testing'. They said that the goal of the CP-Smartsurfaces project was therefore to develop a highly sensitive conducting polymer-based platform which not only senses the PSA but also 'electrochemically controls and reduces interfering non-specific protein binding' as this 'will enhance sensitivity'.

The research team noted that 'conducting polymer nanostructured sensors are relatively inexpensive to fabricate, which makes them an ideal candidate for biosensors as point-of-care devices'. These advantages could allow biosensor-based diagnostics to facilitate cancer screening, and may therefore 'result in earlier detection and prognosis,' commented the scientists.

Altri progetti dello stesso programma (FP7-PEOPLE)

ANTEPIGENETICS (2013)

The role of epigenetics in the regulation of reproduction and behavior in insect societies

Read More  

DPRETB (2010)

"Exploring decaprenyl-phosphoryl ribose epimerase (DprE1) as a validated target for TB drug discovery: Assay development, high-throughput screening and search for novel DprE1 inhibitor scaffolds"

Read More  

JMAP (2012)

Joint Max Born Institute - Amplitude Phd Program

Read More