CONFRA

"Conformal fractals in analysis, dynamics, physics"

 Coordinatore UNIVERSITE DE GENEVE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙278˙000 €
 EC contributo 1˙278˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-01-01   -   2013-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE

 Organization address address: Rue du General Dufour 24
city: GENEVE
postcode: 1211

contact info
Titolo: Dr.
Nome: Alex
Cognome: Waehry
Email: send email
Telefono: +41 22 379 75 60
Fax: +41 22 379 11 80

CH (GENEVE) hostInstitution 1˙278˙000.00
2    UNIVERSITE DE GENEVE

 Organization address address: Rue du General Dufour 24
city: GENEVE
postcode: 1211

contact info
Titolo: Prof.
Nome: Stanislav
Cognome: Smirnov
Email: send email
Telefono: -3791130
Fax: -3791157

CH (GENEVE) hostInstitution 1˙278˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

scaling    critical    extremal    conformally    multifractal    holomorphic    connections    invariant    random    harmonic    physics    curves    spectra    studying    structures    percolation    maps    dynamical    models    ising    limits    fractal   

 Obiettivo del progetto (Objective)

'The goal of this project is to study conformally invariant fractal structures from the perspectives of analysis, dynamics, probability, geometry and physics, emphasizing interrelations of these fields. In the last two decades such structures emerged in several areas: continuum scaling limits of 2D critical models in statistical physics (percolation, Ising model); extremal configurations for various problems in complex analysis (multifractal harmonic measures, coefficient growth of univalent maps, Brennan's conjecture); chaotic sets for complex dynamical systems (Julia sets, Kleinian groups). Capitalizing on recent successes, I plan to continue my work in these areas, exploiting their interactions and connections to physics. I intend to achieve at least some of the following goals: * To establish that several critical lattice models have conformally invariant scaling limits, by building upon results on percolation and Ising models and finding discrete holomorphic observables. * To study geometric properties of arising fractal curves and random fields by connecting them to Schramm's SLE curves and Gaussian Free Fields. * To investigate massive scaling limits by describing them geometrically with generalizations of SLEs. * To lay mathematical framework behind relevant physical notions, such as Coulomb Gas (by relating height functions to GFFs) and Quantum Gravity (by identifying limits of random planar graphs with Liouville QGs). * To improve known bounds in several old questions in complex analysis by studying multifractal spectra of harmonic measures. * To estimate extremal behavior of such spectra by using holomorphic motions of (quasi) conformal maps and thermodynamic formalism. * To understand nature of extremal multifractals for harmonic measure by studying random and dynamical fractals. The topics involved range from century old to very young ones. Recently connections between them started to emerge, opening exciting possibilities for new developments in some long standing open problems.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

STOMAMOTOR (2012)

Stomatocyte Nanomotors: Programmed Supramolecular Architectures for Autonomous Movement

Read More  

ENLIGHTENED (2014)

Nanophotonic Nanomechanical Mass Spectrometry for Biology and Health

Read More  

NANOBRAIN (2010)

On-chip memristive artificial nano-synapses and neural networks

Read More