Coordinatore | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 0 € |
EC contributo | 163˙702 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-IEF-2008 |
Funding Scheme | MC-IEF |
Anno di inizio | 2009 |
Periodo (anno-mese-giorno) | 2009-03-01 - 2011-02-28 |
# | ||||
---|---|---|---|---|
1 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | coordinator | 163˙702.69 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'This project aims to use computer simulations to elucidate the structural properties and the phase behaviour of DNA-coated colloids. Several parameters, such as the shape and size of the colloids, the length and flexibility of the grafted DNA, and the number of DNA strands per colloid influence the equilibrium properties of these materials in ways that are, as yet, poorly understood. The applicant, Dr. Mladek, intends to use Monte Carlo simulations to predict the structure and phase behaviour of DNA-coated colloids. To this end she will adapt existing simulation techniques (e.g. umbrella sampling, configurational bias Monte Carlo and thermodynamic integration) to this specific problem. Where necessary, novel MonteCarlo techniques will be developed. It is expected that the proposed project will provide insights that can assist experimental work on the self-assembly of these materials which have many potential technological applications (for instance as photonic band-gap materials). As a first aim, the applicant will explore how DNA-coated colloids can best be designed to serve as building blocks for the self-assembly of non-trivial crystal structures. In this project, the applicant aims to maintain close contacts with the relevant experimental groups, both at the host institution and elsewhere.'