TEMPIC

Temperature Perception in Crop Plants

 Coordinatore  

 Organization address address: "Norwich Research Park, Colney"
city: NORWICH
postcode: NR4 7UH

contact info
Titolo: Dr.
Nome: Mary
Cognome: Anderson
Email: send email
Telefono: -451803
Fax: -452446

 Nazionalità Coordinatore Non specificata
 Totale costo 0 €
 EC contributo 1˙735 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-08-01   -   2011-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    JOHN INNES CENTRE

 Organization address address: "Norwich Research Park, Colney"
city: NORWICH
postcode: NR4 7UH

contact info
Titolo: Dr.
Nome: Mary
Cognome: Anderson
Email: send email
Telefono: -451803
Fax: -452446

UK (NORWICH) coordinator 173˙568.66

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

sensing    lines    temperature    components    genes    expression    pathway    brachypodium    screens    crop    data    atlas    genetic    gene    perception    plants    ambient    arabidopsis   

 Obiettivo del progetto (Objective)

'The objective of this proposal is to discover components of the ambient temperature perception pathway in Brachypodium distachyon. This will help us understand the way in which crop plants perceive and respond to changes in ambient temperature, including climate change. A gene expression atlas for the major ambient temperature responses in Brachypodium will be created using microarrays, to identify genes that show a continually variable expression across the ambient (i.e. non-stress inducing) temperature range. These experiments will be compared to data from Arabidopsis to identify the level of conservation in temperature perception pathways between monocots and dicots. The promoters of temperature responsive genes identified through this analysis will be fused to the firefly Luciferase gene to develop ambient temperature reporter lines. Selected lines will be used in forward genetic screens (using fast neutron irradiation mutagenesis) to identify key components of the Brachypodium temperature sensing pathway. This analysis will be complemented by functional characterisation of temperature sensing genes identified in parallel screens in Arabidopsis that have been carried in the Wigge lab as well as using the expression atlas data. These reverse genetics approaches will use RNA interference technology to knock-down the activity of the genes of interest. The phenotypes of these plants will be assessed to determine the direct role of each candidate within the temperature perception pathway. Taken together, this project aims to provide novel information about the way in which our major crop plants will respond to changes in ambient temperature by continuing the development of Brachypodium as a model organism for temperate cereals, such as wheat and barley, and identifying genetic components within the monocot temperature perception pathway.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SPTPCDR2 (2011)

Spatio-temporal Control of Cell Division in Fission Yeast

Read More  

CAGEDRUGS (2011)

Design and elaboration of novel topological drugs based on cage compounds

Read More  

HRS EAT (2012)

Epicardial adipose tissue as a regulator of myocardial biology: adiponectin signaling pathways

Read More