Coordinatore | TECHNISCHE UNIVERSITAET DRESDEN
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 1˙956˙000 € |
EC contributo | 1˙956˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-StG |
Funding Scheme | ERC-SG |
Anno di inizio | 2009 |
Periodo (anno-mese-giorno) | 2009-11-01 - 2015-10-31 |
# | ||||
---|---|---|---|---|
1 |
MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Organization address
address: Hofgartenstrasse 8 contact info |
DE (MUENCHEN) | beneficiary | 291˙100.80 |
2 |
TECHNISCHE UNIVERSITAET DRESDEN
Organization address
address: HELMHOLTZSTRASSE 10 contact info |
DE (DRESDEN) | hostInstitution | 1˙664˙899.20 |
3 |
TECHNISCHE UNIVERSITAET DRESDEN
Organization address
address: HELMHOLTZSTRASSE 10 contact info |
DE (DRESDEN) | hostInstitution | 1˙664˙899.20 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'This interdisciplinary project aims (i) to understand intracellular transport processes on a molecular level using novel nano-optical imaging tools and (ii) to use the insight from cellular systems to operate biomolecular motor systems in engineered environments for the fulfillment of complex nanotechnological tasks. Building on experience in optical microscopy and single molecule biophysics the research group will develop and apply nanotechnology-based tools to study the dynamical functioning of microtubule-based motor proteins in vitro and in vivo with nanometer resolution in three dimensions. These studies are expected to broaden the general knowledge about the design principles of molecular machines as well as the principles by which they interact with each other. This knowledge will - in return - pave the road for applications of these highly evolved transport machineries for a wide range of self-organizing nanofunctions in engineered environments. In contrast to conventional "macroscopic" top-down or "atomic" bottom-up approaches, a driving factor for this research is the capability of cellular machines to work in parallel, thus enabling the efficient fabrication and detection of nanostructures. The project will be strongly focussing on the interface between molecular cell biology and nanotechnology. With respect to the applied ERC funding, the project goals can be described by: Goal 1: Single-molecule studies on motor proteins using optical 3D-nanometer imaging, Goal 2: Investigation of cooperative effects in multi-motor transport, Goal 3: External control over transport systems in engineered environments, and Goal 4: Application of motor systems for nano-manipulation and nano-detection. Regarding the long-term goal, it is envisioned to let smart nanomaterials fulfill biological functions in cellular systems and to efficiently operate biomolecular machines in engineered environments.'