SIDEWAYS

Final size determination through spatio-temporal regulation of phytohormone signaling pathways

 Coordinatore TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 4854
Fax: +972 4 8232958

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IRG-2008
 Funding Scheme MC-IRG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-01-01   -   2014-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 4854
Fax: +972 4 8232958

IL (HAIFA) coordinator 100˙000.00

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

progress    recent    lab    significant    regulation    phytohormones    cells    communication    plant    regulate    hormonal    signal    questions    organ    signals    genetic    cell   

 Obiettivo del progetto (Objective)

'The decision to grow or to stop growing is fundamental for plant survival. Small organic molecules called phytohormones play an important role in growth regulation. Significant progress has been made in identification and characterization of regulatory biosynthesis pathway and signaling components of various phytohormones. However our knowledge of how different hormones regulate growth in time and space and how they are coordinated remains rudimentary. Recent findings have revised the dogma that phytohormones are acting in all cells of the plant body to regulate its growth. Thus, it has been demonstrated that phytohormones act locally and in a particular cell type to affect growth of the entire organ. An exciting recent finding in this regard is that perception of the polyhydroxylated steroids called brassinosteroids (BRs) in epidermal cells are sufficient to control the growth of all above-ground organs in the model plant Arabidopsis. This suggests that signal/s, yet unknown, are used to coordinate growth between the epidermis and inner cell-layers in the plant. Therefore, my proposal aims to address the following questions: what is the spatio-temporal regulation of BR signal transduction during growth and to what extent cell-cell communication is involved, what is the molecular basis for cell-cell communication and how mechanical and phytohormone signals are integrated to control final size. To answer these questions my lab will use advanced genomic approaches including tissue specific short-read sequencing of hormonal regulated mRNA and high-throughput chemical genetic screens. Furthermore, my lab will develop biosensors for hormonal readout at the cellular level which will be combined with cell biology and genetic tools. Taken together, these studies should lead to a significant progress in our understanding of how simultaneous growth of an organ is orchestrated and how local signals in cells and tissues are integrated to control this process.'

Altri progetti dello stesso programma (FP7-PEOPLE)

MAMMALIAN ERAD (2009)

EXPANDING THE KNOWLEDGE ON MAMMALIAN ENDOPLASMIC RETICULUM-ASSOCIATED DEGRADATION (ERAD)

Read More  

E3ANDTGFBINCANCER (2008)

Role of E3 Ub-ligases in TGF-beta signaling and tumorigenesis

Read More  

TRANSFORMATIONS (2012)

Transformations of violence during the decline of insurgencies

Read More