Coordinatore | MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Organization address
address: Hofgartenstrasse 8 contact info |
Nazionalità Coordinatore | Germany [DE] |
Sito del progetto | http://www.mf.mpg.de/NanoCARD |
Totale costo | 5˙263˙512 € |
EC contributo | 3˙806˙600 € |
Programma | FP7-NMP
Specific Programme "Cooperation": Nanosciences, Nanotechnologies, Materials and new Production Technologies |
Code Call | FP7-NMP-2008-SMALL-2 |
Funding Scheme | CP-FP |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-01-01 - 2013-12-31 |
# | ||||
---|---|---|---|---|
1 |
MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Organization address
address: Hofgartenstrasse 8 contact info |
DE (MUENCHEN) | coordinator | 794˙600.00 |
2 |
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Organization address
address: BATIMENT CE 3316 STATION 1 contact info |
CH (LAUSANNE) | participant | 549˙500.00 |
3 |
WEIZMANN INSTITUTE OF SCIENCE
Organization address
address: HERZL STREET 234 contact info |
IL (REHOVOT) | participant | 432˙500.00 |
4 |
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Organization address
address: TECHNION CITY - SENATE BUILDING contact info |
IL (HAIFA) | participant | 361˙500.00 |
5 |
THE FOUNDATION FOR MEDICAL RESEARCHINFRASTRUCTURAL DEVELOPMENT AND HEALTH SERVICES NEXT TO THE MEDICAL CENTER TEL AVIV
Organization address
address: WEIZMANN STREET 6 contact info |
IL (Tel Aviv) | participant | 339˙000.00 |
6 |
Idea Bio-Medical Ltd.
Organization address
address: Prof. Bergman St. 2 contact info |
IL (Rehovot) | participant | 296˙000.00 |
7 |
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH
Organization address
address: Raemistrasse 101 contact info |
CH (ZUERICH) | participant | 278˙100.00 |
8 |
SCUOLA NORMALE SUPERIORE DI PISA
Organization address
address: Piazza dei Cavalieri 7 contact info |
IT (Pisa) | participant | 256˙500.00 |
9 |
CHALMERS TEKNISKA HOEGSKOLA AB
Organization address
address: - contact info |
SE (GOETEBORG) | participant | 187˙500.00 |
10 |
EVERCYTE GMBH
Organization address
address: MUTHGASSE 18 contact info |
AT (WIEN) | participant | 178˙140.00 |
11 |
CELLMADE SAS
Organization address
address: Rue de la Cure 16 contact info |
FR (CHAPPES) | participant | 133˙260.00 |
12 |
Nome Ente NON disponibile
Organization address
address: Uhlandstr. 16 contact info |
DE (Seligenstadt) | participant | 0.00 |
13 |
QIAGEN GMBH
Organization address
address: Qiagen Strasse 1 contact info |
DE (Hilden) | participant | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Cell therapy and tissue engineering are emerging as novel therapeutic paradigms for myocardial repair. The rationale behind the cell replacement approach is based on the assumption that an increase in the number of functional cardiomyocytes within the diseased area may improve the mechanical properties of this compromised region. A common strategy attempts to initially combine, ex-vivo, cells with polymeric scaffolds to generate a construct, followed by in-vivo engraftment onto the heart muscle. Despite first encouraging results, the clinical utility of these approaches is hampered by the paucity of cell sources for human cardiomyocytes and by the limited direct functional integration of grafted cells and high degree of donor cell death following cell grafting in host myocardial tissue. NanoCARD will create a conceptually new type of biomimetic nanoscopically designed scaffold able to generate cardiac tissue replacement for the myocardium. Within our project we will design novel cellular environments with broad but precisely-controlled diversity in chemical composition, physical properties, and geometrical spacing of individual peptides on the nanometre scale. The capability of these environments to regulate cell response will be explored by high throughput approaches using a new chip technology developed within the project. An additional unique concept for controlling the function of cardiac cells is given by applying periodic mechanical strain in the range of heart frequency during the tissue engineering process. The knowledge gained within NanoCARD will be translated into the design and production of a novel biocompatible nanostructured device (therapeutic surface) with a desired bioactivity inducing specific behaviour of endothelial cells and cardiomyocytes to revolutionise treatment of myocardial defects. The inclusion of relevant companies in the consortium assures the identification of opportunities for the intended product developments.'