MULTI-SCALE FLOWS

Multi-scale modeling of mass and heat transfer in dense gas-solid flows

 Coordinatore  

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Non specificata
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-AdG
 Funding Scheme ERC
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-03-01   -   2015-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITEIT TWENTE

 Organization address address: DRIENERLOLAAN 5
city: ENSCHEDE
postcode: 7522 NB

contact info
Titolo: Mr.
Nome: Martin
Cognome: Van Aken
Email: send email
Telefono: +31-53-489 2900
Fax: ++31 53 4894841

NL (ENSCHEDE) beneficiary 0.00
2    TECHNISCHE UNIVERSITEIT EINDHOVEN

 Organization address address: DEN DOLECH 2
city: EINDHOVEN
postcode: 5612 AZ

contact info
Titolo: Dr.
Nome: Laurent
Cognome: Nelissen
Email: send email
Telefono: +31 40 2473000
Fax: +31 40 2444321

NL (EINDHOVEN) hostInstitution 2˙500˙000.00
3    TECHNISCHE UNIVERSITEIT EINDHOVEN

 Organization address address: DEN DOLECH 2
city: EINDHOVEN
postcode: 5612 AZ

contact info
Titolo: Prof.
Nome: Johannes Alfonsius Maria
Cognome: Kuipers
Email: send email
Telefono: +31 40 2474931

NL (EINDHOVEN) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

exchange    flows    dense    time    particle    heat    involving    first    flow    solid    phenomena    industrial    models    momentum    gas   

 Obiettivo del progetto (Objective)

'Dense gas-solid flows have been the subject of intense research over the past decades, owing to its wealth of scientifically interesting phenomena, as well as to its direct relevance for innumerable industrial applications. Dense gas solid flows are notoriously complex and its phenomena difficult to predict. This finds its origin in the large separation of relevant scales: particle-particle and particle-gas interactions at the microscale (< 1 mm) dictate the phenomena that occur at the macroscale (> 1 meter), the fundamental understanding of which poses a huge challenge for both the scientific and technological community. This proposal is aimed at providing a comprehensive understanding of large-scale dense gas-solid flow based on first principles, that is, based on the exchange of mass, momentum and heat at the surface of the individual solid particles, below the millimeter scale. To this end, we employ a multi-scale approach, where the gas-solid flow is described by three different models. Such an approach is by now widely recognized as the most rigorous and viable pathway to obtain a full understanding of dense-gas solid flow, and has become very topical in chemical engineering science. The unique aspect of this proposal is the scale and the comprehensiveness of the research: we want to consider, for the first time, the exchange of heat, momentum and energy, and the effects of polydispersity, heterogeneity, and domain geometries, at all three levels of modeling, and validated by one-to-one experiments. These generated insight and models will be extremely relevant for the design and scale-up of industrial equipment involving dispersed particulate flow, which is currently a fully empirical process, involving expensive and time-consuming experimentation.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

HYDRATIONLUBE (2010)

Hydration lubrication: exploring a new paradigm

Read More  

FAMHEALTH (2013)

"Family life courses, intergenerational exchanges and later life health"

Read More  

EGALITARIANISM (2014)

"Egalitarianism: Forms, Processes, Comparisons"

Read More