ANTHOS

Analytic Number Theory: Higher Order Structures

 Coordinatore GEORG-AUGUST-UNIVERSITAET GOETTINGEN STIFTUNG OEFFENTLICHEN RECHTS 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙004˙000 €
 EC contributo 1˙004˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2015-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    GEORG-AUGUST-UNIVERSITAET GOETTINGEN STIFTUNG OEFFENTLICHEN RECHTS

 Organization address address: WILHELMSPLATZ 1
city: GOTTINGEN
postcode: 37073

contact info
Titolo: Ms.
Nome: Nadja
Cognome: Daghbouche
Email: send email
Telefono: +49 551 39 9795
Fax: +49 551 39 189795

DE (GOTTINGEN) hostInstitution 1˙004˙000.00
2    GEORG-AUGUST-UNIVERSITAET GOETTINGEN STIFTUNG OEFFENTLICHEN RECHTS

 Organization address address: WILHELMSPLATZ 1
city: GOTTINGEN
postcode: 37073

contact info
Titolo: Prof.
Nome: Valentin
Cognome: Blomer
Email: send email
Telefono: 49551397787
Fax: +49551 3922985

DE (GOTTINGEN) hostInstitution 1˙004˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

   automorphic    forms    multiple    degree    algebraic    varieties    bounds    subconvexity    theory    groups    rank    conjecture   

 Obiettivo del progetto (Objective)

'This is a proposal for research at the interface of analytic number theory, automorphic forms and algebraic geometry. Motivated by fundamental conjectures in number theory, classical problems will be investigated in higher order situations: general number fields, automorphic forms on higher rank groups, the arithmetic of algebraic varieties of higher degree. In particular, I want to focus on - computation of moments of L-function of degree 3 and higher with applications to subconvexity and/or non-vanishing, as well as subconvexity for multiple L-functions; - bounds for sup-norms of cusp forms on various spaces and equidistribution of Hecke correspondences; - automorphic forms on higher rank groups and general number fields, in particular new bounds towards the Ramanujan conjecture; - a proof of Manin's conjecture for a certain class of singular algebraic varieties. The underlying methods are closely related; for example, rational points on algebraic varieties will be counted by a multiple L-series technique.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SINK (2012)

Subduction Initiation reconstructed from Neotethyan Kinematics (SINK): An iterative geological and numerical study of the driving forces behind plate tectonics

Read More  

SYMBIOSIS (2008)

Mechanisms of specificity during symbiosis signalling

Read More  

GAUGE/GRAVITY (2013)

The Gauge/Gravity Duality and Geometry in String Theory

Read More