SHPEF

Stability and hyperbolicity of polynomials and entire functions

 Coordinatore TECHNISCHE UNIVERSITAT BERLIN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 880˙000 €
 EC contributo 880˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-08-01   -   2015-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAT BERLIN

 Organization address address: STRASSE DES 17 JUNI 135
city: BERLIN
postcode: 10623

contact info
Titolo: Ms.
Nome: Silke
Cognome: Hönert
Email: send email
Telefono: +49 30 314 79973
Fax: +49 30 314 21689

DE (BERLIN) hostInstitution 880˙000.00
2    TECHNISCHE UNIVERSITAT BERLIN

 Organization address address: STRASSE DES 17 JUNI 135
city: BERLIN
postcode: 10623

contact info
Titolo: Prof.
Nome: Olga
Cognome: Holtz
Email: send email
Telefono: +49 30 314 29295

DE (BERLIN) hostInstitution 880˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

operator    multivariate    stable    matrix    algorithms    polynomials    science    theoretical    theory    hyperbolic    combinatorics    computer   

 Obiettivo del progetto (Objective)

'The project is devoted to the theory, algorithms and applications of hyperbolic and stable multivariate polynomials. This line of research is meant to lead to new fundamental results in analysis, matrix and operator theory, combinatorics, and theoretical computer science. The central goal of the project is to develop a comprehensive, seamless, theory of hyperbolic and stable multivariate polynomials. The four areas and four objectives of the project are as follows: Classical analysis: revisit and expand the theory of hyperbolic and stable polynomials and entire functions in both the univariate and the multivariate setting. Applications: apply the theory of hyperbolic and stable polynomials to problems of matrix theory, combinatorics and theoretical computer science. Operator theory: develop the theory of hypo- and hyperoscillating operators and apply it to problems of fluid dynamics. Algorithms: develop fast and accurate algorithms for testing hyperbolicity/stability and for related problems.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MINICELL (2013)

Building minimal cells to understand active cell shape control

Read More  

GROWTHCONTROL (2009)

Dissecting the transcriptional mechanisms controlling growth during normal development and cancer

Read More  

PROGEOCOM (2013)

Avenues in Probabilistic and Geometric Combinatorics

Read More