MIREG

Regulation of viral miRNAs processing

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Denis
Cognome: Fix
Email: send email
Telefono: +33 3 88 10 67 19
Fax: +33 3 88 10 86 15

 Nazionalità Coordinatore France [FR]
 Totale costo 45˙000 €
 EC contributo 45˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-ERG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2013-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Denis
Cognome: Fix
Email: send email
Telefono: +33 3 88 10 67 19
Fax: +33 3 88 10 86 15

FR (PARIS) coordinator 45˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

duplexes    kshv    regulate    cells    viruses    herpes    related    rna    single    mostly    own    steps    mirnas    infecting    express    small    viral    mirna    cell    mammalian    family    expression    found   

 Obiettivo del progetto (Objective)

'The discovery of RNA interference in plant and Caenorhabditis elegans, and all related RNA silencing processes, was one of the major progresses in modern biology and has added a higher degree of complexity to our understanding of the regulation processes in cell. The most abundant and studied eukaryotic regulatory RNAs are miRNAs. Although the mode of action of miRNAs is well known, the principles governing their expression and activity are only beginning to emerge. Approximately 50% of mammalian miRNA loci are found in close proximity to other miRNAs. These clustered miRNAs are transcribed from a single polycistronic transcription unit leading to a primary transcript which is successively matured by a nuclear (Drosha) and a cytoplasmic (Dicer) RNase III-type enzyme to yield small RNA duplexes. Expression of many miRNAs is spatially and temporally highly controlled. More attributed to transcriptional control, this phenomenon is also now related to differential processing of precursors, or degradation of mature miRNAs. Recently, viruses infecting mammalian cells (mostly of the herpes family) have been shown to express their own miRNAs. These miRNAs can act both in cis, to ensure accurate expression of viral genomes, and in trans, to modify the expression of host transcripts. They regulate fundamental processes in the cell such as immunity, apoptosis, or key steps for optimal infection environment establishment. The project will address how viral miRNAs are processed and how this processing is regulated. We intend to approach the question in a structural way, using the large miRNA cluster found in Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) as a model to uncover mechanisms explaining the sequential steps leading from a long RNA molecule containing numerous hairpins to short RNA duplexes. Interestingly, although all 12 KSHV miRNAs derive from a single pri-miRNA in latently cells, dramatic differences in their levels of expression were observed.'

Introduzione (Teaser)

MicroRNAs (miRNAs) are small non-coding RNA molecules found in plants and animals that help regulate gene expression. Recent studies showed that viruses infecting mammalian cells (mostly of the herpes family) express their own miRNAs.

Altri progetti dello stesso programma (FP7-PEOPLE)

ARDIS (2011)

Academic Researchers Driving Innovation Systems

Read More  

SYMBIOSIGNAL (2011)

Characterization of Nod factor receptor LYK3 protein-interaction networks during early symbiotic signaling in Medicago truncatula

Read More  

COLOURFUL GENES (2010)

Mapping Genotypes to Phenotypes: Development of a Linkage Map and Mapping of Colour Polymorphisms in Ischnura elegans (Odonata)

Read More