MAGNETALS

Tunable array of magnetic nano-crystals designed at the atomic scale: engineering high performance magnetic materials using hybrid organic-inorganic nano-architectures

 Coordinatore COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙499˙725 €
 EC contributo 1˙499˙725 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-11-01   -   2016-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Dr.
Nome: Fabien Nicolas
Cognome: Silly
Email: send email
Telefono: +33 1 69 08 65 56
Fax: +33 1 69 08 84 46

FR (PARIS 15) hostInstitution 1˙499˙725.00
2    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Mr.
Nome: Jean-Christophe
Cognome: Coste
Email: send email
Telefono: 33169089097
Fax: 33169082199

FR (PARIS 15) hostInstitution 1˙499˙725.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

engineer    storage    grains    shape    density    data    inorganic    structure    architectures    size    magnetism    atomic    bit    computer    magnetic    materials    nano   

 Obiettivo del progetto (Objective)

'The storage density of computer hard drives is growing so rapidly that for new computer drive generations not only optimized materials are needed but also new concepts for data storage. Last decades, higher storage densities on computer disks were achieved by optimization of magnetic materials, i.e. the magnetic grains were gradually shrunk while, at the same time, the magnetic stability was increased. The nowadays smallest storage unit is made up 100 to 600 grains, that form one bit. Each grain is about 10 nanometres in size. These grains are arranged next to each other on substrates that are plated with magnetic metals. Decreasing further the size and amount of the grains necessary for one bit is now irremediably affecting the signal/noise ratio, weaker signals leading to loss of information. Therefore, new concepts for magnetic storage media have to be found. Material reduced size leads to novel properties totally different from bulk properties. In our project we will engineer matter at the atomic and molecular level and develop advanced construction methods to build new functionalised materials for magnetic storage. We propose a multidisciplinary research project, that aims to explore various aspects related to magnetic properties of highly organised organic-inorganic nano-architectures. We will engineer tunable supramolecular assemblies to host and organise inorganic shape-selected magnetic nanocrystals. Due to the sensitive interrelation of magnetism and the atomic structure of these systems, any induced nanostructure modification will result in changes of the magnetism. Our ability to tailor nanocrystal size, composition, structure, shape and position will allow us to tune magnetism at the atomic scale. We will thus be able to design and produce new high density hybrid nano-architectures having gigantic magnetic performance, i.e., huge magnetostatic energy stored and a high blocking temperature. This research therefore has the potential to make a considerable impact on the high density data storage industry'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

GRB-SN (2012)

The Gamma Ray Burst – Supernova Connection and Shock Breakout Physics

Read More  

FLINT (2011)

Finite-Length Information Theory

Read More  

PHAGORISC (2014)

Connecting RNA and protein degradation machineries

Read More