Coordinatore | UNIVERSITY COLLEGE LONDON
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 3˙264˙188 € |
EC contributo | 3˙264˙188 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-12-01 - 2015-11-30 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITY COLLEGE LONDON
Organization address
address: GOWER STREET contact info |
UK (LONDON) | hostInstitution | 3˙264˙188.00 |
2 |
UNIVERSITY COLLEGE LONDON
Organization address
address: GOWER STREET contact info |
UK (LONDON) | hostInstitution | 3˙264˙188.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The primary objective of the proposed project is to develop robot mediated human interface technologies to manually explore, manipulate and assemble progressively smaller objects ranging from micro- to nano-meter scales and a secondary objective is to demonstrate the power of the interface system in the investigation of the fundamental mechanics and neural mechanisms of touch. The proposed system will consist of a master-slave robotic teleoperation (TO) subsystem and a virtual reality (VR) subsystem. The master robot will enable the user to touch, feel and manipulate (1) real micro/nano structures through the slave robot or (2) computer models of micro/nano structures in the virtual reality environment. Specific aims of this effort are as follows: (1) design and develop a custom master system to enable the user to have real-time visual, auditory, and bimanual haptic interactions; (2) design and develop a slave system consisting of microscopes and manipulators progressively augmented to enable micro to nano-precision movements and forces; (3) develop modular software architecture with device abstraction to support multiple master and slave devices; (4) integrate virtual reality software to enable the user to have real-time visual, auditory, and bimanual interactions with virtual models at micro- to nano-meter scales based on empirical data or to test hypotheses; (5) use the system to perform biomechanics and neurophysiology experiments at progressively micro- to nano-precision movements and forces; (6) develop mathematical models of mechanotransduction for quantitative understanding of touch mechanisms at multiple scales.'