VIDEOWORLD

"Modeling, interpreting and manipulating digital video"

 Coordinatore INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 2˙454˙090 €
 EC contributo 2˙454˙090 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-AdG_20100224
 Funding Scheme ERC-AG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

 Organization address address: Domaine de Voluceau, Rocquencourt
city: LE CHESNAY Cedex
postcode: 78153

contact info
Titolo: Ms.
Nome: Valérie
Cognome: Boutheon
Email: send email
Telefono: +33 1 39635750
Fax: +33 1 39635034

FR (LE CHESNAY Cedex) hostInstitution 2˙454˙090.00
2    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

 Organization address address: Domaine de Voluceau, Rocquencourt
city: LE CHESNAY Cedex
postcode: 78153

contact info
Titolo: Prof.
Nome: Jean
Cognome: Ponce
Email: send email
Telefono: -181

FR (LE CHESNAY Cedex) hostInstitution 2˙454˙090.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

for    content    learning    sparse    yet    video    interpretation    editing    learned    inherited    models   

 Obiettivo del progetto (Objective)

'Digital video is everywhere, at home, at work, and on the Internet. Yet, effective technology for organizing, retrieving, improving, and editing its content is nowhere to be found. Models for video content, interpretation and manipulation inherited from still imagery are obsolete, and new ones must be invented. With a new convergence between computer vision, machine learning, and signal processing, the time is right for such an endeavor. Concretely, we will develop novel spatio-temporal models of video content learned from training data and capturing both the local appearance and nonrigid motion of the elements---persons and their surroundings---that make up a dynamic scene. We will also develop formal models of the video interpretation process that leave behind the architectures inherited from the world of still images to capture the complex interactions between these elements, yet can be learned effectively despite the sparse annotations typical of video understanding scenarios. Finally, we will propose a unified model for video restoration and editing that builds on recent advances in sparse coding and dictionary learning, and will allow for unprecedented control of the video stream. This project addresses fundamental research issues, but its results are expected to serve as a basis for groundbreaking technological advances for applications as varied as film post-production, video archival, and smart camera phones.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NEMO (2012)

Nearshore Monitoring and Modelling: Inter-scale Coastal Behaviour

Read More  

GADD45&P38SIGNALING (2008)

Role of the Gadd45 family and p38 MAPK in tumor suppression and autoimmunity

Read More  

HYLIFE (2014)

Exploiting hybrids between annual and perennial plant species to identify genes conferring agronomically important traits

Read More