SLEEP PLASTICITY

The role of rhythmic synaptic plasticity in regulating sleep and behavioral performance

 Coordinatore BAR ILAN UNIVERSITY 

 Organization address address: BAR ILAN UNIVERSITY CAMPUS
city: RAMAT GAN
postcode: 52900

contact info
Titolo: Ms.
Nome: Estelle
Cognome: Waise
Email: send email
Telefono: 97235317439
Fax: 97236353277

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-IRG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-04-01   -   2015-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    BAR ILAN UNIVERSITY

 Organization address address: BAR ILAN UNIVERSITY CAMPUS
city: RAMAT GAN
postcode: 52900

contact info
Titolo: Ms.
Nome: Estelle
Cognome: Waise
Email: send email
Telefono: 97235317439
Fax: 97236353277

IL (RAMAT GAN) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

night    disorders    homeostatic    memory    clock    behavior    rhythmic    circuits    synapses    sleep    day    synaptic    neuronal    function    affect    zebrafish    plasticity    circadian   

 Obiettivo del progetto (Objective)

'Alterations in endogenous circadian rhythm and debilitating sleep disorders represent an unsolved medical problem. The circadian clock regulates the sleep/wake cycle and is complemented by homeostatic sleep pressure factors. Surprisingly, why we sleep and how the clock synchronizes rhythmic behavior, remain a mystery. Intriguing hypotheses suggest that the role of sleep is to maintain synaptic homeostasis or to reactivate specific circuits that are important to memory and learning. Also, it is postulated that clock-controlled genes affect behavior through the remodelling of synapses throughout the day and night. Therefore, it is important to isolate and characterize specific circuits that demonstrate rhythmic synaptic plasticity and to understand how they affect behavior in a live vertebrate. In this proposal, the transparent and diurnal zebrafish model will be used to examine patterns of synaptic plasticity and behavior during the day and night. The zebrafish is ideally suited to study sleep and circadian rhythms, and the neuronal networks are largely conserved with mammals. We recently showed, for the first time, circadian and homeostatic sleep control of rhythmic structural synaptic plasticity in zebrafish. The goal of this proposal is to identify and characterize new functional circuits involved in circadian, sleep, and memory regulation. We will use in-vivo imaging techniques to visualize rhythmic synapses during the day and night, and after sleep deprivation in multiple neuronal circuits. Loss- and gain-of-function approaches will be used to understand how specific circuits regulate synaptic plasticity and behavioral performance. These data should provide important evidence for the role of the circadian clock and sleep in regulating synaptic plasticity and behavior. This study is expected to provide a critical framework to understand the function of sleep, and may help in the treatment of sleep disorders.'

Altri progetti dello stesso programma (FP7-PEOPLE)

X-RAY BINARIES (2009)

Determining the system parameters of low mass X-ray binaries

Read More  

HOMOQCSSTACKS (2012)

Homotopy theory of quasi-coherent sheaves on stacks

Read More  

PROFESSOR (2012)

The sources of reionization

Read More