DISCONV

"DISCRETE AND CONVEX GEOMETRY: CHALLENGES, METHODS, APPLICATIONS"

 Coordinatore MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Hungary [HU]
 Totale costo 1˙298˙012 €
 EC contributo 1˙298˙012 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-AdG_20100224
 Funding Scheme ERC-AG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET

 Organization address address: REALTANODA STREET 13-15
city: Budapest
postcode: 1053

contact info
Titolo: Dr.
Nome: Imre
Cognome: Barany
Email: send email
Telefono: +36 1 4838330
Fax: +36 1 4838333

HU (Budapest) hostInstitution 1˙298˙012.28
2    MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET

 Organization address address: REALTANODA STREET 13-15
city: Budapest
postcode: 1053

contact info
Titolo: Ms.
Nome: Tiziana
Cognome: Del Viscio
Email: send email
Telefono: +36 1 4838308
Fax: +36 1 4838333

HU (Budapest) hostInstitution 1˙298˙012.28

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

problem    integer    convex    theory    random    algorithmic    geometry    lattice    polytopes    tverberg    questions       topological    discrete    algebraic    complexity   

 Obiettivo del progetto (Objective)

'Title: Discrete and convex geometry: challenges, methods, applications Abstract: Research in discrete and convex geometry, using tools from combinatorics, algebraic topology, probability theory, number theory, and algebra, with applications in theoretical computer science, integer programming, and operations research. Algorithmic aspects are emphasized and often serve as motivation or simply dictate the questions. The proposed problems can be grouped into three main areas: (1) Geometric transversal, selection, and incidence problems, including algorithmic complexity of Tverberg's theorem, weak epsilon-nets, the k-set problem, and algebraic approaches to the Erdos unit distance problem. (2) Topological methods and questions, in particular topological Tverberg-type theorems, algorithmic complexity of the existence of equivariant maps, mass partition problems, and the generalized HeX lemma for the k-coloured d-dimensional grid. (3) Lattice polytopes and random polytopes, including Arnold's question on the number of convex lattice polytopes, limit shapes of lattice polytopes in dimension 3 and higher, comparison of random polytopes and lattice polytopes, the integer convex hull and its randomized version.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MITRAC (2014)

Mitochondrial translational regulation coupled to respiratory chain assembly and protein import

Read More  

VIAMASS (2014)

Visual Recognition Made Super-Scalable

Read More  

OPTOLOCO (2013)

Dynamic sensory-motor integration in spinal circuits

Read More