ANAMULTISCALE

Analysis of Multiscale Systems Driven by Functionals

 Coordinatore FORSCHUNGSVERBUND BERLIN E.V. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙390˙000 €
 EC contributo 1˙390˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-AdG_20100224
 Funding Scheme ERC-AG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FORSCHUNGSVERBUND BERLIN E.V.

 Organization address address: Rudower Chaussee 17
city: BERLIN
postcode: 12489

contact info
Titolo: Dr.
Nome: Friederike
Cognome: Schmidt-Tremmel
Email: send email
Telefono: +49 30 63923481
Fax: +49 30 63923333

DE (BERLIN) hostInstitution 1˙390˙000.00
2    FORSCHUNGSVERBUND BERLIN E.V.

 Organization address address: Rudower Chaussee 17
city: BERLIN
postcode: 12489

contact info
Titolo: Prof.
Nome: Alexander
Cognome: Mielke
Email: send email
Telefono: 493020000000
Fax: 49302044975

DE (BERLIN) hostInstitution 1˙390˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

coupled    framework    equations    dynamics    structures    partial    modeling    phenomena    multiple    solutions    evolution    functionals    differential    geometric    scales   

 Obiettivo del progetto (Objective)

'Many complex phenomena in the sciences are described by nonlinear partial differential equations, the solutions of which exhibit oscillations and concentration effects on multiple temporal or spatial scales. Our aim is to use methods from applied analysis to contribute to the understanding of the interplay of effects on different scales. The central question is to determine those quantities on the microscale which are needed to for the correct description of the macroscopic evolution. We aim to develop a mathematical framework for analyzing and modeling coupled systems with multiple scales. This will include Hamiltonian dynamics as well as different types of dissipation like gradient flows or rate-independent dynamics. The choice of models will be guided by specific applications in material modeling (e.g., thermoplasticity, pattern formation, porous media) and optoelectronics (pulse interaction, Maxwell-Bloch systems, semiconductors, quantum mechanics). The research will address mathematically fundamental issues like existence and stability of solutions but will mainly be devoted to the modeling of multiscale phenomena in evolution systems. We will focus on systems with geometric structures, where the dynamics is driven by functionals. Thus, we can go much beyond the classical theory of homogenization and singular perturbations. The novel features of our approach are - the combination of different dynamical effects in one framework, - the use of geometric and metric structures for coupled partial differential equations, - the exploitation of Gamma-convergence for evolution systems driven by functionals.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

USEMS (2008)

Uncovering the Secrets of an Earthquake: Multidisciplinary Study of Physico-Chemical Processes During the Seismic Cycle

Read More  

FUTURESOC (2009)

Forecasting Societies Adaptive Capacities to Climate Change

Read More  

DYNAMOM (2011)

New magnetic resonance techniques to determine the dynamic structure of mitochondrial outer membrane proteins and their complexes

Read More