POPRNASEQ

Population transcriptional genomics in humans using high throughput sequencing

 Coordinatore UNIVERSITE DE GENEVE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091118
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-05-01   -   2016-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE

 Organization address address: Rue du General Dufour 24
city: GENEVE
postcode: 1211

contact info
Titolo: Mr.
Nome: Alex
Cognome: Waehry
Email: send email
Telefono: +41 22 379 75 60
Fax: +41 22 379 11 80

CH (GENEVE) hostInstitution 1˙500˙000.00
2    UNIVERSITE DE GENEVE

 Organization address address: Rue du General Dufour 24
city: GENEVE
postcode: 1211

contact info
Titolo: Prof.
Nome: Emmanouil
Cognome: Dermitzakis
Email: send email
Telefono: +41 22 379 5483
Fax: +41 22 379 5706

CH (GENEVE) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

variants    expression    protein    dissection    cell    data    cellular    genetic    status    differentiation    gene    abundance    regulatory    patterns    primary    transcripts    variation   

 Obiettivo del progetto (Objective)

'Gene expression is one of the marks of cellular state and function. The relative abundance of transcripts defines and is a result of the differentiation status of a cell. Interrogation of gene expression levels and patterns in the human and other genomes can be informative about perturbations from the average pattern due to external stimuli or internal factors such as genetic variants. Gene expression profiles have been extensively used to assess developmental processes, pathways contributing to cell differentiation, and predicting the outcome of disease status. Understanding the effects of genetic variation in basic cellular processes such as gene expression is key to the dissection of the genetic contributions to whole organism phenotypes. We propose to interrogate the transcriptome of primary fibroblasts, primary T-cells and EBV-transformed B-cell (lymphoblastoid cell lines or LCLs) from umbilical cords of 200 individuals of European descent using next generation sequencing (mRNAseq). A subset will also be interrogated for transcriptionally engaged RNA polymerases (GROseq) and protein abundance. These data will be analyzed for the detection of eQTLs and other genetic effects associated with variation in alternative splicing and other properties of the transcripts and dissection of the genetic effects from primary transcription to protein and their tissue specific effects. These data will be integrated with genome-wide association studies and other efforts to dissect the genetic basis of complex traits and diseases in humans. In addition, we will develop bioinformatic models to understand the fine scale regulatory signals that are responsible for the regulatory patterns observed and how sequence variants have an effect on them.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

COMET (2012)

foundations of COmputational similarity geoMETtry

Read More  

EVODRTB (2013)

Compensatory Evolution and Epistasis in Multidrug-resistant Mycobacterium tuberculosis

Read More  

CYTOTOXICTISALANS (2012)

Salan Ti(IV) Complexes as Novel Anti-Cancer Chemotherapeutics

Read More