MILESTONE

A putative mechanism coupling DNA replication and translation in archaea conserved in eukaryotes

 Coordinatore UNIVERSITE PARIS-SUD 

 Organization address address: RUE GEORGES CLEMENCEAU 15
city: ORSAY
postcode: 91405

contact info
Titolo: Mr.
Nome: Nicolas
Cognome: Lecompte
Email: send email
Telefono: +33 1 69155589
Fax: +33 1 69155599

 Nazionalità Coordinatore France [FR]
 Totale costo 185˙248 €
 EC contributo 185˙248 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-09-01   -   2013-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE PARIS-SUD

 Organization address address: RUE GEORGES CLEMENCEAU 15
city: ORSAY
postcode: 91405

contact info
Titolo: Mr.
Nome: Nicolas
Cognome: Lecompte
Email: send email
Telefono: +33 1 69155589
Fax: +33 1 69155599

FR (ORSAY) coordinator 185˙248.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

clusters    proteins    eukaryotes    dna    synthesis    genes    archaea    replication    bacteria   

 Obiettivo del progetto (Objective)

'Archaea, forming the third domain of life, are extremely interesting to study because of their position between Bacteria and Eukaryotes. Indeed, they possess characteristics from these two other domains; they are morphologically very close to bacteria (cell size; absence of a nuclear envelope) but show cellular mechanisms closer to eukaryotic ones (DNA replication, histones). Following a bioinformatics study of replication genes environments in archaea, Pr. Forterre’s lab showed that 2 clusters were highly conserved among archaea; surprisingly, the clusters grouped genes coding for replisome AND ribosomal proteins. The conservation of the clusters throughout evolution strongly suggests a functional interaction of the proteins involved. This project aims at studying the clusters to uncover a coupling between replication and translation in archaea. This would bring tremendous results for two reasons: first, such a control has never been shown in archaea or eukaryotes before, and was discovered only recently in bacteria, through the stringent response. No mechanism is known in archaea and eukaryotes to link proteins synthesis to DNA synthesis. Second, most of the genes located in the clusters have homologues in eukaryotes, and some of them are overexpressed in some human cancers. Thus, finding a new function and interacting partners for these proteins would help in understanding their role in cancer development and defining new therapeutic targets.'

Altri progetti dello stesso programma (FP7-PEOPLE)

FIBOSI (2010)

Flow Interaction Between the Ocean Surface and the Interior

Read More  

NETDYNCORTEX (2010)

Network dynamics of auditory cortex and the impact of correlations on the encoding of sensory information

Read More  

ASODAFCA (2010)

Asymmetric Organocatalysed Diels-Alder/Fragmentation Cascades

Read More