Coordinatore | UNIVERSITA DELLA CALABRIA
Organization address
address: Via Pietro Bucci 7/11 B contact info |
Nazionalità Coordinatore | Italy [IT] |
Totale costo | 486˙900 € |
EC contributo | 291˙900 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2010-IRSES |
Funding Scheme | MC-IRSES |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-09-01 - 2015-08-31 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITA DELLA CALABRIA
Organization address
address: Via Pietro Bucci 7/11 B contact info |
IT (ARCAVACATA DI RENDE) | coordinator | 170˙100.00 |
2 |
THE UNIVERSITY OF WARWICK
Organization address
address: Kirby Corner Road - University House - contact info |
UK (COVENTRY) | participant | 90˙300.00 |
3 |
IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD contact info |
UK (LONDON) | participant | 31˙500.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The complex dynamics of turbulent plasmas is a challenging subject for the scientific community. The solar system is the most accessible environment for its study. Space plasmas are in a strongly turbulent regime, rich in instabilities and interesting nonlinear phenomena (excitation of waves, structures formation, wave-particle interaction, reconnection), and in a wide range of conditions (e.g. magnetization or energy input). Due to the large availability of experimental measurements provided by instruments onboard space missions, the study of solar system plasmas is of great interest for the understanding of fundamental plasma processes. The development of high resolution numerical simulations plays a key role to understand the phenomena and interpret the observations. Phenomena occurring in plasma turbulence are among the main problems for the confinement of plasma (e.g. in fusion devices), and are thus of great strategic interest for energetic and industrial purposes. The aim of this project is to provide concrete advances in the understanding of a very complex phenomenon, namely the turbulent behaviour of collisionless plasmas. We propose to address a number of questions such as the properties of the turbulent cascade in plasmas, including the role of Hall-MHD in the development of dispersive range; the formation and properties of coherent structures; the nature of dissipative processes, such as reconnection. The research groups involved in the project represent excellence in the field, with complementary approaches. These include next generation of space missions, advanced analysis of data, massive numerical simulations, theory and models. We plan to address the problems form different points of view, through a comprehensive exchange of knowledge and resources. This will ensure a complete vision of the processes under study, offering the possibility to answer some of the open questions in the framework of plasma turbulence.'
Investigation of the role of CXCL5/CXCR1 pathway in atherosclerosis
Read MoreAnalysis and Modelling of the Reactivity of Pozzolans during Cement Hydration
Read MoreCoordination of Oxidative Stress Signalling with Forkhead-Regulated Transcription during the Fission Yeast Cell Cycle
Read More