FUNCMOLQIP

Design and Preparation of Functional Molecules for Quantum Computing and Information Processing

 Coordinatore  

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Non specificata
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-07-01   -   2016-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAT DE BARCELONA

 Organization address address: GRAN VIA DE LES CORTS CATALANES 585
city: BARCELONA
postcode: 8007

contact info
Titolo: Dr.
Nome: Guillem
Cognome: Aromi
Email: send email
Telefono: 34934039760
Fax: 34934907725

ES (BARCELONA) hostInstitution 1˙500˙000.00
2    UNIVERSITAT DE BARCELONA

 Organization address address: GRAN VIA DE LES CORTS CATALANES 585
city: BARCELONA
postcode: 8007

contact info
Titolo: Mr.
Nome: Xavier
Cognome: Gutierrez
Email: send email
Telefono: 34934035385
Fax: 34934489434

ES (BARCELONA) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

strategies    mcps    molecular    context    qip    synthesis    ligands    synthetic    exploited    molecules    act    quantum    promising   

 Obiettivo del progetto (Objective)

'The future of Nanotechnology depends inevitably on the creation of molecular devices capable of performing crucial functions. We propose new strategies for the design and synthesis of molecular functional materials based on coordination chemistry, as well as the study of their physico-chemical properties in order to evaluate their relevance in the context of molecular spintronics and electronics. The main rationale underlying these strategies stems from the conviction that the unlimited potential of coordination compounds may be greatly exploited if the processes of self assembly leading to these systems are controlled and manipulated through the careful design of the ligands that will shape their structure and properties. We have designed the synthesis of new families of multinucleating ligands intended to form polynuclear coordination molecules with predetermined structures. Preliminary analysis of their performance has served to identify entries into novel categories of Single Molecule Magnets, SMMs, and Molecular Cluster Pairs, MCPs. The latter are stable molecules that exhibit two quasi independent metallic clusters, which fulfil many of the requirements necessary to act as 2qbit quantum gates for processors in quantum computing. We propose a full synthetic programme aimed at exploiting and expanding this promising avenue toward the fabrication of molecular systems that will be exploited in the context of Quantum Information Processing, QIP. In particular, we have identified from our previous work three classes of MCPs with promising features towards that end. We aim at exploiting the tools that we have created and develop new synthetic resources for the synthesis of robust molecules with the ability to act as 2qbits in QIP based on magnetic nanoclusters.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

FUTURE-PHARMA (2011)

Exploiting plants for the production of future generation recombinant pharmaceuticals

Read More  

CHRONEUROREPAIR (2014)

Chromatin states in neurogenesis – from understanding chromatin loops to eliciting neurogenesis for repair

Read More  

DC-LYMPH (2008)

The Role of Lymphatic Vessels in Dendritic Cell Homing and Maturation

Read More