Opendata, web and dolomites

RegulRNA SIGNED

Modulation of RNA-based regulatory processes by viruses

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "RegulRNA" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙998˙291 €
 EC max contribution 1˙998˙291 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme ERC-COG
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2020-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙998˙291.00

Map

 Project objective

Small and large non-coding RNAs are essential components at the heart of gene expression regulation. The past fifteen years have witnessed the emergence of a new field of research impacting diverse domains of biology. Among these, virology is no exception and discoveries such as the antiviral role of RNA silencing, virus-encoded microRNAs (miRNAs), or miRNA-based regulation of viruses have notably shifted our views of host-virus interactions. Although we know a lot about the mechanisms of action of ncRNAs, and their role in the context of viral infections, we know much less regarding the control of the regulatory RNAs themselves. In other words, how are the regulators regulated? To provide answers to this burning question, we propose to use different viruses as models to investigate the various levels where modulation of regulatory RNA can occur. Thus, we will study the importance of RNA secondary and tertiary structure as well as accessory proteins in the regulation of miRNA primary transcript processing. In a second axis, we propose to investigate how the functional, mature miRNAs can be controlled. To this end, we will focus on the mechanisms of target-mediated miRNA decay and the role of competing endogenous RNAs. We will finally turn to the regulation of antiviral RNA silencing. Although it seems that this kind of defence mechanism exist in mammalian cells, it is not yet clear how physiologically relevant it is and how it interfaces with other innate immune mechanisms. In this multidisciplinary project, we will use a combination of techniques ranging from bioinformatics to cellular biology to achieve our goal to get a comprehensive view of how RNA silencing processes are regulated during virus infection.

 Publications

year authors and title journal last update
List of publications.
2018 Antoine Creugny, Aurélie Fender, Sébastien Pfeffer
Regulation of primary microRNA processing
published pages: 1980-1996, ISSN: 0014-5793, DOI: 10.1002/1873-3468.13067
FEBS Letters 592/12 2019-06-06
2018 Erika Girardi, Paula López, Sébastien Pfeffer
On the Importance of Host MicroRNAs During Viral Infection
published pages: , ISSN: 1664-8021, DOI: 10.3389/fgene.2018.00439
Frontiers in Genetics 9 2019-05-10

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REGULRNA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REGULRNA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More