Opendata, web and dolomites

NETEEG

Spatial super-resolution of electrophysiological measurements

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "NETEEG" data sheet

The following table provides information about the project.

Coordinator
TEL AVIV UNIVERSITY 

Organization address
address: RAMAT AVIV
city: TEL AVIV
postcode: 69978
website: http://www.tau.ac.il/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-PoC
 Funding Scheme ERC-POC
 Starting year 2015
 Duration (year-month-day) from 2015-04-01   to  2016-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY IL (TEL AVIV) coordinator 150˙000.00

Map

 Project objective

Electroencephalography (EEG) is the non-invasive recording of electrical brain activity, and is an indispensable diagnostic and research tool. A significant advantage of EEG compared to other brain imaging modalities is its high temporal resolution. The downside of EEG is, however, its poor spatial resolution, which is one of the reasons for its gradual replacement by costlier alternatives. It results mainly from the sharp discontinuity in the electric conductivity of the skull bones acting as a strong low-pass filter and limiting the amount meaningful information that can be extracted from EEG signals.

We propose a novel concept of EEG measurement hardware which, in combination with signal processing techniques, will increase the spatial resolution of EEG by as much as an order of magnitude. Our idea is based on the observation that by connecting a dynamic network of controllable impedances between pairs of measurement electrodes, one can alter the shape of the spatial filter constituted by the skull. Since EEG is a relatively narrow-band signal (about 100Hz, limited by the time constants of basics units of neural activity), we expect to be able to measure tens or hundreds of different configurations of the network, either directly or by using a compressed sampling scheme, without compromising the temporal resolution. This will introduce many independent equations to the EEG inverse problem and improve source estimation, having critical impact on the diagnostic capabilities of EEG as well as on its use in emerging applications such as neuro-feedback and brain-computer interface (BCI).

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NETEEG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NETEEG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More