Opendata, web and dolomites

HEMOTECT SIGNED

Hemozoin Detection using Nitrogen-Vacancy centers in Diamond

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HEMOTECT" data sheet

The following table provides information about the project.

Coordinator
JOHANNES GUTENBERG-UNIVERSITAT MAINZ 

Organization address
address: SAARSTRASSE 21
city: MAINZ
postcode: 55122
website: www.uni-mainz.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://budker.uni-mainz.de/
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JOHANNES GUTENBERG-UNIVERSITAT MAINZ DE (MAINZ) coordinator 171˙460.00

Map

 Project objective

Advances in chemistry, biology and medicine have been historically promoted by physical tools, with notable examples x-ray crystallography, nuclear magnetic resonance spectroscopy and microscopy. A new physical tool has recently emerged as a unique electromagnetic-field sensor and it is based on the exploitation of the remarkable magneto-optic properties of one particular color center in diamond, known as the Nitrogen-Vanancy (NV) center. In recent years, nano-scale sensors using NV centers have enabled the detection of nanoscale ensembles of nuclear and/or electron spins, and high-resolution imaging of living cells, to name few of the most outstanding sensing demonstrations using NV centers. We propose the development and implementation of a high-throughput sensor utilizing NV centers in diamonds, for the sensitive, quantitative and rapid detection of ensembles of paramagnetic spins in liquids and crystals. Sensitive paramagnetic-spin sensors will enable the possibility for nanoscale sensing and imaging of the structure and electron configuration of biomolecules, and most importantly, of real-time observations of chemical and biological processes. The principal motivation for the proposed project is the implementation of the developed sensor for the detection of paramagnetic crystals, and in particular of synthetic hemozoin crystals. Synthetic hemozoin crystals have identical magneto-optic properties with naturally-grown hemozoin crystals, a byproduct of malaria infection. A label-free, high-throughput sensor of hemozoin crystals, with sensitivity limits better than the currently used malaria diagnostic techniques will pave the way for a new diagnostic tool that could be used for the early diagnosis of malaria, and therefore, contribute to the eradication of one of the deadliest diseases in the world.

 Publications

year authors and title journal last update
List of publications.
2017 Huijie Zheng, Georgios Chatzidrosos, Arne Wickenbrock, Lykourgos Bougas, Reinis Lazda, Andris Berzins, Florian Helmuth Gahbauer, Marcis Auzinsh, Ruvin Ferber, Dmitry Budker
Level anti-crossing magnetometry with color centers in diamond
published pages: 101190X, ISSN: , DOI: 10.1117/12.2261160
Slow Light, Fast Light, and Opto-Atomic Precision Metrology X 2019-06-13
2017 Georgios Chatzidrosos, Arne Wickenbrock, Lykourgos Bougas, Nathan Leefer, Teng Wu, Kasper Jensen, Yannick Dumeige, Dmitry Budker
Miniature Cavity-Enhanced Diamond Magnetometer
published pages: , ISSN: 2331-7019, DOI: 10.1103/physrevapplied.8.044019
Physical Review Applied 8/4 2019-06-13
2016 Arne Wickenbrock, Huijie Zheng, Lykourgos Bougas, Nathan Leefer, Samer Afach, Andrey Jarmola, Victor M. Acosta, Dmitry Budker
Microwave-free magnetometry with nitrogen-vacancy centers in diamond
published pages: 53505, ISSN: 0003-6951, DOI: 10.1063/1.4960171
Applied Physics Letters 109/5 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HEMOTECT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HEMOTECT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

COR1-TCELL (2019)

Analysis of the role for coronin 1-dependent cell density signalling in T-cell homeostasis

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More