Opendata, web and dolomites

G4-PTROs SIGNED

Regulatory network of G-quadruplex dependent Post-Transcriptional mRNA Operons (PTROs)

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 G4-PTROs project word cloud

Explore the words cloud of the G4-PTROs project. It provides you a very rough idea of what is the project "G4-PTROs" about.

modulate    gene    disorders    interactions    global    single    guanine    form    undeniable    regulation    determines    intervention    stabilized    g4    assay    suggesting    link    pyridostatin    signaling    cation    implications    direction    first    solely    reports    shrna    list    underrepresented    cancer    bases    pointed    g4s    mechanistically    rbps    neurological    mrna    genome    many    abundance    components    expression    rna    network    provides    regulatory    transport    act    questions    stable    relationships    mrnas    metal    ultimate    constitute    secondly    disease    players    function    recruitment    proteins    differentially    hoogsteen    cellular    transcriptome    fate    hydrogen    intriguing    structures    arrangements    ing    diseases    layer    structure    opens    post    translation    human    turnover    motives    tetrads    thereby    transcriptional    operon       upstream    ligand    translated    functions    stabilizes    planar    transcription    therapeutic    links    assessing    pds    influence    understand    motive    quadruplexes    dna    stacking    data    functional    containing    stability    bonds    central    seem   

Project "G4-PTROs" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-05-01   to  2018-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Many studies of global gene expression focus solely on studying the transcriptome thereby only assessing mRNA abundance. However, transcription is only a single layer of gene expression and recently, the influence of post-transcriptional regulation has become undeniable. Rather underrepresented players in post-transcriptional control are G-quadruplexes (G4s). These stable structures can form guanine tetrads in DNA and RNA via p-p-stacking of several planar arrangements of four guanine bases stabilized by Hoogsteen hydrogen bonds and a central metal cation. Recent reports have pointed to an important regulatory role of G4 motives in key cellular functions including pre-mRNA processing, RNA turnover, mRNA transport thereby suggesting intriguing links to human diseases as cancer and neurological disorders. G4 structures in mRNAs seem to act as signaling components that constitute an own post-transcriptional operon. Recruitment of G4-specific RBPs then determines the ultimate fate of G4-containing mRNAs. Not many RBPs or upstream regulatory factors of G4s have been identified and the functional consequences of these interactions are not known. In this proposal I will address these questions. First, I will identify mRNAs that are differentially translated and/or stabilized in the presence of the G4 specific ligand pyridostatin (PDS), which stabilizes G4 structures. The resulting comprehensive list of mRNAs will be the first data set that provides a mechanistically link of G4 motive regulation. Secondly, I will identify factors in the G4 regulatory network using a genome wide shRNA assay to determine proteins that modulate the stability and/or the translation of G4 motive containing mRNAs. It is important to understand G4 structure-function relationships and upstream regulatory processes as the emerging link between G4 formation and human disease opens up an exciting research direction that has potential implications for therapeutic intervention.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "G4-PTROS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "G4-PTROS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

Comedy and Politics (2018)

The Comedy of Political Philosophy. Democratic Citizenship, Political Judgment, and Ideals in Political Practice.

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More