Opendata, web and dolomites

MassLOC SIGNED

Massive MIMO Localization for 5G Networks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MassLOC" data sheet

The following table provides information about the project.

Coordinator
CHALMERS TEKNISKA HOEGSKOLA AB 

Organization address
address: -
city: GOETEBORG
postcode: 41296
website: www.chalmers.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Project website https://sites.google.com/site/hwymeers/
 Total cost 185˙857 €
 EC max contribution 185˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2019-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB SE (GOETEBORG) coordinator 185˙857.00

Map

 Project objective

Next-generation 5G wireless data networks promise significant gains in terms of offering the ability to accommodate more users at higher data rates with better reliability while consuming less power. To meet such a challenge, massive MIMO systems have been proposed to allow for orders of magnitude improvement in spectral and energy efficiency using relatively simple processing. The basic idea is equipping cellular base stations with rectangular arrays, each of them is consisted of very large number of antennas. The extra antennas help focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits include reduced latency, simplification of the media access control layer, and robustness against intentional jamming.

An unexplored and unintentional side-effect of using a very large number of antennas combined with high carrier frequencies, is the ability to pinpoint the location of the user with high accuracy. This project aims to develop several analytical tools in order to model, design, and analyze massive MIMO-OFDM systems from the localization point of view, and ascertain their validity via experimental datasets. Ultimately, our broad goal is to conceptualize an engineering research idea, and then transition it into innovative applications that can be replicated for real-world cellular networks operated by established service providers and mobile manufacturers. In parallel, the project will allow the fellow to achieve several knowledge transfer objectives and increase prominence in his research field.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MASSLOC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MASSLOC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More  

ParkIFNAR (2020)

Soluble IFNAR2 in Parkinson's disease and its role in the regulation of IFNβ in a neuroinflammatory context.

Read More  

TRACE-AD (2019)

Tracking the Effects of Amyloid and Tau Pathology on Brain Systems and Cognition in Early Alzheimer’s Disease

Read More