Opendata, web and dolomites

CancerFluxome SIGNED

Cancer Cellular Metabolism across Space and Time

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CancerFluxome project word cloud

Explore the words cloud of the CancerFluxome project. It provides you a very rough idea of what is the project "CancerFluxome" about.

fulfil    metabolism    events    intermediates    clinical    cell    endeavour    intriguing    population    metabolic    spectrometry    central    accumulating    efficiency    anabolic    fractionation    synchronization    evidences    lack    benefit    compartments    oscillations    changing    spatio    hallmark    averaging    subcellular    mass    disentangle    considering    bioenergetics    cancer    artefacts    mitochondrial    cofactors    variability    mutations    extensively    vs    computational    instrumental    mitochondria    reductive    spatial    fluxes    shuttling    tca    front    fundamentally    cytoplasm    explore    drugs    view    quantifying    dynamics    oxidative    selectively    cellular    temporal    combining    demands    alterations    regulated    biosynthesis    fluxomics    network    meet    altered    anti    cells    adapt    thermodynamic    glutaminolysis    isotope    rapid    reveal    energetic    tracing    revisit    oncogenic    originating    oncogene    preliminary    tumorigenesis    cycle    limited    tumorigenic    flux   

Project "CancerFluxome" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙481˙250 €
 EC max contribution 1˙481˙250 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-02-01   to  2022-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 1˙481˙250.00

Map

 Project objective

The metabolism of cancer cells is altered to meet cellular requirements for growth, providing novel means to selectively target tumorigenesis. While extensively studied, our current view of cancer cellular metabolism is fundamentally limited by lack of information on variability in metabolic activity between distinct subcellular compartments and cells.

We propose to develop a spatio-temporal fluxomics approach for quantifying metabolic fluxes in the cytoplasm vs. mitochondria as well as their cell-cycle dynamics, combining mass-spectrometry based isotope tracing with cell synchronization, rapid cellular fractionation, and computational metabolic network modelling.

Spatio-temporal fluxomics will be used to revisit and challenge our current understanding of central metabolism and its induced adaptation to oncogenic events – an important endeavour considering that mitochondrial bioenergetics and biosynthesis are required for tumorigenesis and accumulating evidences for metabolic alterations throughout the cell-cycle.

Our preliminary results show intriguing oscillations between oxidative and reductive TCA cycle flux throughout the cell-cycle. We will explore the extent to which cells adapt their metabolism to fulfil the changing energetic and anabolic demands throughout the cell-cycle, how metabolic oscillations are regulated, and their benefit to cells in terms of thermodynamic efficiency. Spatial flux analysis will be instrumental for investigating glutaminolysis - a ‘hallmark’ metabolic adaptation in cancer involving shuttling of metabolic intermediates and cofactors between mitochondria and cytoplasm.

On a clinical front, our spatio-temporal fluxomics analysis will enable to disentangle oncogene-induced flux alterations, having an important tumorigenic role, from artefacts originating from population averaging. A comprehensive view of how cells adapt their metabolism due to oncogenic mutations will reveal novel targets for anti-cancer drugs.

 Publications

year authors and title journal last update
List of publications.
2019 Shoval Lagziel, Won Dong Lee, Tomer Shlomi
Studying metabolic flux adaptations in cancer through integrated experimental-computational approaches
published pages: , ISSN: 1741-7007, DOI: 10.1186/s12915-019-0669-x
BMC Biology 17/1 2020-03-05
2017 Eunyong Ahn, Praveen Kumar, Dzmitry Mukha, Amit Tzur, Tomer Shlomi
Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle
published pages: 953, ISSN: 1744-4292, DOI: 10.15252/msb.20177763
Molecular Systems Biology 13/11 2019-06-13
2019 Shoval Lagziel, Won Dong Lee, Tomer Shlomi
Inferring cancer dependencies on metabolic genes from large-scale genetic screens
published pages: , ISSN: 1741-7007, DOI: 10.1186/s12915-019-0654-4
BMC Biology 17/1 2019-06-06
2019 Won Dong Lee, Dzmitry Mukha, Elina Aizenshtein, Tomer Shlomi
Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells
published pages: 1351, ISSN: 2041-1723, DOI: 10.1038/s41467-019-09352-1
Nature Communications 10/1 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CANCERFLUXOME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CANCERFLUXOME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

INSPIRE (2019)

System-wide discovery and analysis of inositol pyrophosphate signaling networks in plants

Read More  

TechChange (2019)

Technological Change: New Sources, Consequences, and Impact Mitigation

Read More