Explore the words cloud of the LATO project. It provides you a very rough idea of what is the project "LATO" about.
The following table provides information about the project.
Coordinator |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 1˙999˙318 € |
EC max contribution | 1˙999˙318 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2016-COG |
Funding Scheme | ERC-COG |
Starting year | 2017 |
Duration (year-month-day) | from 2017-04-01 to 2022-03-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD | UK (OXFORD) | coordinator | 1˙999˙318.00 |
Research in 2D materials has increased dramatically since the first isolation of graphene in 2004, with diverse interdisciplinary studies. In the last few years, 2D material research expanded beyond graphene by the development of other 2D materials, such as monolayered transition metal dichalcogenides, black phosphorous, and Boron Nitride. There are hundreds of possible 2D crystals that can be isolated, with properties ranging from metallic, semi-metallic, semiconducting to insulating, depending on the material composition. Semiconducting 2D materials have attracting interest in next-generation electronics/opto-electronics such as transistors, photo-gated transistors, photo-detectors, solar cells, and light emitting devices (LEDs), molecular sensors and optical imaging sensors. The unique structural form of 2D materials provides several benefits over other existing materials: ultrathin, flexible, highly transparent, large surface to volume ratio, and 2D quantum confinement. High transparency LEDs are required for applications in transparent displays on glass panels. Many 2D based opto-electronic devices have used mechanical exfoliation from bulk crystals, but this is limited to small areas. Recent work on chemical vapour deposition (CVD) to grow wafer-scale 2D materials has opened up exciting opportunities for commercial exploitation and has accelerated the intensity of research in this field towards real applications. The vision of this proposal is to realize a new class of ultra-thin, flexible, large-area, transparent, high-sensitivity opto-electronic device arrays based on all 2D materials, with a focus on imaging sensors and LEDs. This will involve wafer-scale CVD synthesis of 2D materials including novel blue and green 2D semiconductors, optical spectroscopy to probe the interlayer interactions, atomic level structure-property correlations using advanced electron microscopy, and the nanoscale fabrication and testing of high efficiency devices.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
Gyeong Hee Ryu, Taishan Zhu, Jun Chen, Sapna Sinha, Viktoryia Shautsova, Jeffrey C. Grossman, Jamie H. Warner Striated 2D Lattice with Subâ€nm 1D Etch Channels by Controlled Thermally Induced Phase Transformations of PdSe 2 published pages: 1904251, ISSN: 0935-9648, DOI: 10.1002/adma.201904251 |
Advanced Materials | 2020-01-27 |
2018 |
Xiaochen Wang, Yuewen Sheng, Ren-Jie Chang, Ja Kyung Lee, Yingqiu Zhou, Sha Li, Tongxin Chen, Hefu Huang, Benjamin F. Porter, Harish Bhaskaran, Jamie H. Warner Chemical Vapor Deposition Growth of Two-Dimensional Monolayer Gallium Sulfide Crystals Using Hydrogen Reduction of Ga 2 S 3 published pages: 7897-7903, ISSN: 2470-1343, DOI: 10.1021/acsomega.8b00749 |
ACS Omega 3/7 | 2020-01-27 |
2018 |
Qu Chen, Huashan Li, Si Zhou, Wenshuo Xu, Jun Chen, Hidetaka Sawada, Christopher S. Allen, Angus I. Kirkland, Jeffrey C. Grossman, Jamie H. Warner Ultralong 1D Vacancy Channels for Rapid Atomic Migration during 2D Void Formation in Monolayer MoS 2 published pages: 7721-7730, ISSN: 1936-0851, DOI: 10.1021/acsnano.8b01610 |
ACS Nano 12/8 | 2020-01-27 |
2018 |
Shanshan Wang, Hidetaka Sawada, Xiaoyu Han, Si Zhou, Sha Li, Zheng Xiao Guo, Angus I. Kirkland, Jamie H. Warner Preferential Pt Nanocluster Seeding at Grain Boundary Dislocations in Polycrystalline Monolayer MoS 2 published pages: 5626-5636, ISSN: 1936-0851, DOI: 10.1021/acsnano.8b01418 |
ACS Nano 12/6 | 2020-01-27 |
2018 |
Gyeong Hee Ryu, Arthur France-Lanord, Yi Wen, Si Zhou, Jeffrey C. Grossman, Jamie H. Warner Atomic Structure and Dynamics of Self-Limiting Sub-Nanometer Pores in Monolayer WS 2 published pages: , ISSN: 1936-0851, DOI: 10.1021/acsnano.8b07051 |
ACS Nano | 2020-01-27 |
2017 |
Ren-Jie Chang, Haijie Tan, Xiaochen Wang, Benjamin Porter, Tongxin Chen, Yuewen Sheng, Yingqiu Zhou, Hefu Huang, Harish Bhaskaran, Jamie H. Warner High-Performance All 2D-Layered Tin Disulfide: Graphene Photodetecting Transistors with Thickness-Controlled Interface Dynamics published pages: 13002-13010, ISSN: 1944-8244, DOI: 10.1021/acsami.8b01038 |
ACS Applied Materials & Interfaces 10/15 | 2020-01-27 |
2018 |
Yingqiu Zhou, Haijie Tan, Yuewen Sheng, Ye Fan, Wenshuo Xu, Jamie H. Warner Utilizing Interlayer Excitons in Bilayer WS 2 for Increased Photovoltaic Response in Ultrathin Graphene Vertical Cross-Bar Photodetecting Tunneling Transistors published pages: 4669-4677, ISSN: 1936-0851, DOI: 10.1021/acsnano.8b01263 |
ACS Nano 12/5 | 2020-01-27 |
2018 |
Martin E. P. Tweedie, Yuewen Sheng, Syed Ghazi Sarwat, Wenshuo Xu, Harish Bhaskaran, Jamie H. Warner Inhomogeneous Strain Release during Bending of WS 2 on Flexible Substrates published pages: 39177-39186, ISSN: 1944-8244, DOI: 10.1021/acsami.8b12707 |
ACS Applied Materials & Interfaces 10/45 | 2020-01-27 |
2018 |
Wenshuo Xu, Daichi Kozawa, Yu Liu, Yuewen Sheng, Ke Wei, Volodymyr B. Koman, Shanshan Wang, Xiaochen Wang, Tian Jiang, Michael S. Strano, Jamie H. Warner Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS 2 :hBN:MoS 2 Heterostructures for Exciton Energy Transfer published pages: 1703727, ISSN: 1613-6810, DOI: 10.1002/smll.201703727 |
Small 14/13 | 2020-01-27 |
2018 |
Sapna Sinha, Yuewen Sheng, Ian Griffiths, Neil P. Young, Si Zhou, Angus I. Kirkland, Kyriakos Porfyrakis, Jamie H. Warner In Situ Atomic-Level Studies of Gd Atom Release and Migration on Graphene from a Metallofullerene Precursor published pages: 10439-10451, ISSN: 1936-0851, DOI: 10.1021/acsnano.8b06057 |
ACS Nano 12/10 | 2020-01-27 |
2018 |
Hefu Huang, Wenshuo Xu, Tongxin Chen, Ren-Jie Chang, Yuewen Sheng, Qianyang Zhang, Linlin Hou, Jamie H. Warner High-Performance Two-Dimensional Schottky Diodes Utilizing Chemical Vapour Deposition-Grown Graphene–MoS 2 Heterojunctions published pages: 37258-37266, ISSN: 1944-8244, DOI: 10.1021/acsami.8b13507 |
ACS Applied Materials & Interfaces 10/43 | 2020-01-27 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LATO" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "LATO" are provided by the European Opendata Portal: CORDIS opendata.