Opendata, web and dolomites

CMRPredict TERMINATED

Patient specific magnetic resonance image guided biomechanical modelling of the heart – Anovel tool towards personalized medicine in heart failure

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CMRPredict project word cloud

Explore the words cloud of the CMRPredict project. It provides you a very rough idea of what is the project "CMRPredict" about.

innovations    additional    significantly    patient    tensor    magnetic    beating    biomechanical    preserved    coverage    compromises    tissue    imaging    overcome    guide    considerable    spatial    diagnose    scan    rate    once    causes    unfortunately    vivo    guided    cardiac    models    disease    standard    limitations    prediction    time    fellowship    diagnostic    world    emerged    mechanics    practical    accuracy    sufficiently    attracted    microscopic    first       morphology    structure    incorporating    hf    50    tool    diffusion    sufficient    progression    primarily    detected    data    tools    guiding    gold    local    myocardial    mass    infarction    microstructure    made    cardiovascular    treatment    accordingly    heart    resolution    predictive    assumptions    promise    framework    population    cmr    image    progressing    modalities    urgent    ultimately    biophysical    routine    assessing    impose    clinical    ejection    mortality    patients    fraction    difficult    insights    individual    resonance   

Project "CMRPredict" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 247˙840 €
 EC max contribution 247˙840 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-GF
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2020-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 247˙840.00
2    University of California San Francisco School of Medicine US (San Francisco) partner 0.00

Map

 Project objective

Heart failure (HF) is a progressing disease currently affecting 2% of the population in the developed world with a mortality rate of 50% within the first five years. While HF with reduced ejection fraction, primarily associated with myocardial infarction, can be detected with sufficient accuracy, HF with preserved ejection fraction is far more difficult to diagnose. Accordingly, there is an urgent need to better diagnose these patients to ultimately guide and improve treatment. Among the clinical imaging modalities, Cardiovascular Magnetic Resonance (CMR) is the gold standard for assessing cardiac mass and ejection fraction, and is capable to assess local cardiac mechanics and tissue properties. Beyond these established methods, cardiac diffusion tensor imaging has emerged as a new tool to enable insights into the microscopic morphology of the beating heart. Unfortunately, due to scan time limitations during clinical routine, compromises in spatial resolution and coverage have to be made. To overcome practical limitations of clinical in vivo CMR imaging and to enable prediction of disease progression for individual patients, additional tools are required. To this end, biomechanical models have attracted considerable attention. Once adapted sufficiently to in-vivo imaging, these models promise patient-specific insights into causes and progression of disease and, help guiding treatment. It is the objective of the present fellowship proposal to significantly advance patient-specific, image-guided modelling of HF by incorporating the most recent developments in both CMR imaging and biophysical modelling. The proposed framework will address limitations of current approaches, which impose generic assumptions about cardiac tissue properties and structure. With recent innovations in CMR imaging, as developed by the applicant, data on local changes of myocardial microstructure will be obtained to achieve the next level of diagnostic and predictive cardiac modelling of HF.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CMRPREDICT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CMRPREDICT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More