Opendata, web and dolomites

ELECTRIC SIGNED

Chip Scale Electrically Powered Optical Frequency Combs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ELECTRIC project word cloud

Explore the words cloud of the ELECTRIC project. It provides you a very rough idea of what is the project "ELECTRIC" about.

lines    distant    threshold    powerful    magnitude    dual    demonstrations    unlike    setups    literally    broadband    provides    spectrum    oscillators    amongst    equally    dispersion    ultra    mode    laser    powered    nitride    revolutionized    enhanced    manufactured    silicon    fold    electric    lower    situations    interactions    deployment    frequency    electrically    acquisition    manufacturable    speeds    optically    synthesis    nonlinear    property    comb    integrate    equifrequency    advantageous    waveform    chip    chips    precision    kerr    link    solutions    sources    compression    fourier    soliton    locked    plasmonic    efficient    continuous    electromagnetic    performance    demonstrated    wave    generators    microwave    millions    pumped    extended    components    radio    resolution    demonstrators    waveguides    hampers    first    noise    spectroscopy    life    bulky    consisting    narrower    combs    spacing    engineered    infrared    transform    lasers    experimental    ofc    optical    exploited    metrology    band    materials    experiments    light    record    spaced    mass   

Project "ELECTRIC" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT GENT 

Organization address
address: SINT PIETERSNIEUWSTRAAT 25
city: GENT
postcode: 9000
website: http://www.ugent.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 1˙391˙250 €
 EC max contribution 1˙391˙250 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT GENT BE (GENT) coordinator 1˙391˙250.00

Map

 Project objective

In ELECTRIC, I will integrate electrically powered optical frequency combs on mass manufacturable silicon chips. This will allow for making use of all the advantageous properties of these light sources in real-life situations. Optical frequency combs are light sources with a spectrum consisting of millions of laser lines, equally spaced in frequency. This equifrequency spacing provides a link between the radio frequency band and the optical frequency band of the electromagnetic spectrum. This property has literally revolutionized the field of frequency metrology and precision laser spectroscopy. Recently, their application field has been extended. Amongst others, their unique properties have been exploited in precision distant measurement experiments as well as optical waveform and microwave synthesis demonstrators. Moreover, so called “dual-comb spectroscopy” experiments have demonstrated broadband Fourier Transform Infrared spectroscopy with ultra-high resolution and record acquisition speeds. However, most of these demonstrations required large bulky experimental setups which hampers wide deployment. I will build frequency combs on optical chips that can be mass-manufactured. Unlike the current chip scale Kerr comb based solutions they do not need to be optically pumped with a powerful continuous wave laser and can have a narrower comb spacing. The challenge here is two-fold. First, we need to make electrically powered integrated low noise oscillators. Second, we need to lower the threshold of current on-chip nonlinear optical interactions by an order of magnitude to use them in on-chip OFC generators.

Specifically I will achieve this goal by: • Making use of ultra-efficient nonlinear optical interactions based on soliton compression in dispersion engineered III-V waveguides and plasmonic enhanced second order nonlinear materials. • Enhance the performance of ultra-low noise silicon nitride mode locked lasers with these nonlinear components.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ELECTRIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ELECTRIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

EASY-IPS (2019)

a rapid and efficient method for generation of iPSC

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More