Opendata, web and dolomites

FunctionalProteomics SIGNED

Proteomic fingerprinting of functionally characterized single synapses

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FunctionalProteomics project word cloud

Explore the words cloud of the FunctionalProteomics project. It provides you a very rough idea of what is the project "FunctionalProteomics" about.

neuronal    vivo    revealed    differences    genetic    composition    photon    mechanisms    consequence    lm    relationships    partly    molecularly    reveal    immunolocalization    individual    ca1    quantify    history    dramatic    circuit    postembedding    content    alpha    shape    size    head    connectome    biophysical    hypothesis    uniform    downregulation    synapses    molecular    tomography    century    hippocampal    recordings    investigations    imaging    postsynaptic    fixed    diversity    dynamic    synaptic    multiple    performing    cell    presynaptic    clamp    types    proteins    astonishing    remarkable    render    array    animals    morphologically    networks    characterization    underlie    patch    ca2    functionally    our    correlations    half    quantal    excitable    determined    performed    pc    causal    nerve    pyramidal    single    mglur1    followed    vitro    functional    demonstrated    created    brain    cells    regions    connectivity    behaving    fingerprints    heterogeneity    quantitative    cognitive    billions   

Project "FunctionalProteomics" data sheet

The following table provides information about the project.

Coordinator
INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES 

Organization address
address: Szigony utca 43
city: Budapest
postcode: 1083
website: www.koki.hu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Hungary [HU]
 Total cost 2˙498˙750 €
 EC max contribution 2˙498˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES HU (Budapest) coordinator 2˙498˙750.00

Map

 Project objective

Our astonishing cognitive abilities are the consequence of complex connectivity within our neuronal networks and the large functional diversity of excitable nerve cells and their synapses. Investigations over the past half a century revealed dramatic diversity in shape, size and functional properties among synapses established by distinct cell types in different brain regions and demonstrated that the functional differences are partly due to different molecular mechanisms. However, synaptic diversity is also observed among synapses established by molecularly and morphologically uniform presynaptic cells on molecularly and morphologically uniform postsynaptic cells. Our hypothesis is that quantitative molecular differences underlie the functional diversity of such synapses. We will focus on hippocampal CA1 pyramidal cell (PC) to mGluR1α O-LM cell synapses, which show remarkable functional and molecular heterogeneity. In vitro multiple cell patch-clamp recordings followed by quantal analysis will be performed to quantify well-defined biophysical properties of these synapses. The molecular composition of the functionally characterized single synapses will be determined following the development of a novel postembedding immunolocalization method. Correlations between the molecular content and functional properties will be established and genetic up- and downregulation of individual synaptic proteins will be conducted to reveal causal relationships. Finally, correlations of the activity history and the functional properties of the synapses will be established by performing in vivo two-photon Ca2 imaging in head-fixed behaving animals followed by in vitro functional characterization of their synapses. Our results will reveal quantitative molecular fingerprints of functional properties, allowing us to render dynamic behaviour to billions of synapses when the connectome of the hippocampal circuit is created using array tomography.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FUNCTIONALPROTEOMICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FUNCTIONALPROTEOMICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MaeBAia (2018)

Mechanisms of adverse effects of Beta-Agonists in Asthma

Read More  

HYDROGEN (2019)

HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration

Read More  

RECON (2019)

Reprogramming Conformation by Fluorination: Exploring New Areas of Chemical Space

Read More