Opendata, web and dolomites

ULTRACEPT SIGNED

Ultra-layered perception with brain-inspired information processing for vehicle collision avoidance

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ULTRACEPT project word cloud

Explore the words cloud of the ULTRACEPT project. It provides you a very rough idea of what is the project "ULTRACEPT" about.

metallic    save    sensitive    million    innovative    energy    capacity    advantages    neural    temporal    bio    power    normal    accidents    autonomous    trustworthy    months    car    modalities    miniaturized    safer    consumption    critical    material    proposes    rain    thirsty    expensive    stage    accident    reliability    detect    size    vision    objects    layered    multiple    avoidance    people    once    badly    few    extracting    issue    low    serve    fog    sensors    life    lighting    human    data    styles    takes    single    huge    shaping    dim    world    collision    vehicles    reflective    segmentation    acceptable    communication    brain    difficult    society    night    ordinary    cope    vehicle    spatial    surfaces    absorbing    inputs    solution    likes    weather    unconnected    computing    cities    accepted    doomed    too    visual    pedestrians    lives    parallel    road    inspired    lidar    demonstrated    detection    happen    laser    buildings    radar    cues    environment    gps    killed   

Project "ULTRACEPT" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LINCOLN 

Organization address
address: Brayford Pool
city: LINCOLN
postcode: LN6 7TS
website: www.lincoln.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙191˙500 €
 EC max contribution 1˙894˙500 € (86%)
 Programme 1. H2020-EU.1.3.3. (Stimulating innovation by means of cross-fertilisation of knowledge)
 Code Call H2020-MSCA-RISE-2017
 Funding Scheme MSCA-RISE
 Starting year 2018
 Duration (year-month-day) from 2018-12-01   to  2022-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LINCOLN UK (LINCOLN) coordinator 891˙000.00
2    UNIVERSITY OF NEWCASTLE UPON TYNE UK (NEWCASTLE UPON TYNE) participant 324˙000.00
3    AGILE ROBOTS AG DE (MUNCHEN) participant 279˙000.00
4    WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER DE (MUENSTER) participant 171˙000.00
5    UNIVERSITAET HAMBURG DE (HAMBURG) participant 162˙000.00
6    VISOMORPHIC TECHNOLOGY LTD UK (LONDON) participant 58˙500.00
7    DINO ROBOTICS GMBH DE (KARLSRUHE) participant 9˙000.00
8    Guangzhou University CN (GUANGZHOU) partner 0.00
9    GUIZHOU UNIVERSITY CN (Guiyang) partner 0.00
10    HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY CN (WUHAN) partner 0.00
11    INSTITUTE OF AUTOMATION CHINESE ACADEMY OF SCIENCES CN (BEIJING) partner 0.00
12    LINGNAN NORMAL UNIVERSITY CN (ZHANJIANG GUANGDONG) partner 0.00
13    NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY JP (FUCHU SHI TOKYO) partner 0.00
14    NORTHWESTERN POLYTECHNICAL UNIVERSITY CN (XI AN) partner 0.00
15    TSINGHUA UNIVERSITY CN (BEIJING) partner 0.00
16    UNIVERSIDAD DE BUENOS AIRES AR (BUENOS AIRES) partner 0.00
17    UNIVERSITI PUTRA MALAYSIA MY (SELANGOR DARUL EHSAN) partner 0.00
18    XI'AN JIAOTONG UNIVERSITY CN (XI'AN) partner 0.00

Map

 Project objective

Autonomous vehicles, although in its early stage, have demonstrated huge potential in shaping future life styles to many of us. However, to be accepted by ordinary users, autonomous vehicles have a critical issue to solve – this is trustworthy collision detection. No one likes an autonomous car that is doomed to a collision accident once every few years or months. In the real world, collision does happen at every second - more than 1.3 million people are killed by road accidents every single year. The current approaches for vehicle collision detection such as vehicle to vehicle communication, radar, laser based Lidar and GPS are far from acceptable in terms of reliability, cost, energy consumption and size. For example, radar is too sensitive to metallic material, Lidar is too expensive and it does not work well on absorbing/reflective surfaces, GPS based methods are difficult in cities with high buildings, vehicle to vehicle communication cannot detect pedestrians or any objects unconnected, segmentation based vision methods are too computing power thirsty to be miniaturized, and normal vision sensors cannot cope with fog, rain and dim environment at night. To save people’s lives and to make autonomous vehicles safer to serve human society, a new type of trustworthy, robust, low cost, and low energy consumption vehicle collision detection and avoidance systems are badly needed.

This consortium proposes an innovative solution with brain-inspired multiple layered and multiple modalities information processing for trustworthy vehicle collision detection. It takes the advantages of low cost spatial-temporal and parallel computing capacity of bio-inspired visual neural systems and multiple modalities data inputs in extracting potential collision cues at complex weather and lighting conditions.

 Deliverables

List of deliverables.
Preliminary visual neural system models for collision cues extraction Documents, reports 2020-03-06 15:56:46
Database for verification Other 2020-03-06 15:56:43
Project website Websites, patent fillings, videos etc. 2020-02-07 12:43:54

Take a look to the deliverables list in detail:  detailed list of ULTRACEPT deliverables.

 Publications

year authors and title journal last update
List of publications.
2020 Jin Xiao, Yuhang Tian, Ling Xie, Xiaoyi Jiang, Jing Huang
A Hybrid Classification Framework Based on Clustering
published pages: 2177-2188, ISSN: 1551-3203, DOI: 10.1109/tii.2019.2933675
IEEE Transactions on Industrial Informatics 16/4 2020-03-05
2019 Qinbing Fu, Hongxin Wang, Cheng Hu, Shigang Yue
Towards Computational Models and Applications of Insect Visual Systems for Motion Perception: A Review
published pages: 263-311, ISSN: 1064-5462, DOI: 10.1162/artl_a_00297
Artificial Life 25/3 2020-03-05
2019 Qinbing Fu, Cheng Hu, Jigen Peng, F. Claire Rind, Shigang Yue
A Robust Collision Perception Visual Neural Network With Specific Selectivity to Darker Objects
published pages: 1-15, ISSN: 2168-2267, DOI: 10.1109/tcyb.2019.2946090
IEEE Transactions on Cybernetics 2019-12-17
2019 Daqi Liu, Nicola Bellotto, Shigang Yue
Deep Spiking Neural Network for Video-Based Disguise Face Recognition Based on Dynamic Facial Movements
published pages: 1-10, ISSN: 2162-237X, DOI: 10.1109/tnnls.2019.2927274
IEEE Transactions on Neural Networks and Learning Systems 19 July 2019 2019-12-16
2019 Hongxin Wang, Jigen Peng, Xuqiang Zheng, Shigang Yue
A Robust Visual System for Small Target Motion Detection Against Cluttered Moving Backgrounds
published pages: 1-15, ISSN: 2162-237X, DOI: 10.1109/TNNLS.2019.2910418
IEEE Transactions on Neural Networks and Learning Systems 01 May 2019 2019-12-16

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ULTRACEPT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ULTRACEPT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.3.)

ROVER (2020)

RELIABLE TECHNOLOGIES AND MODELS FOR VERIFIED WIRELESS BODY-CENTRIC TRANSMISSION AND LOCALIZATION

Read More  

OPEN (2019)

Outcomes of Patients’ Evidence With Novel, Do-It-Yourself Artificial Pancreas Technology

Read More  

MAIL (2019)

Identifying Marginal Lands in Europe and strengthening their contribution potentialities in a CO2sequestration strategy

Read More