Explore the words cloud of the LASERCOMB project. It provides you a very rough idea of what is the project "LASERCOMB" about.
The following table provides information about the project.
Coordinator |
FYLA LASER SL
Organization address contact info |
Coordinator Country | Spain [ES] |
Project website | https://www.fyla.com/project-lasercomb/ |
Total cost | 71˙429 € |
EC max contribution | 50˙000 € (70%) |
Programme |
1. H2020-EU.3. (PRIORITY 'Societal challenges) 2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs) 3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies) |
Code Call | H2020-SMEInst-2018-2020-1 |
Funding Scheme | SME-1 |
Starting year | 2018 |
Duration (year-month-day) | from 2018-07-01 to 2018-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | FYLA LASER SL | ES (VALENCIA) | coordinator | 50˙000.00 |
FYLA, which is a company highly specialised in the design, production and manufacturing of ultrafast fibre lasers, is requesting the SME instrument for their innovative product LASERCOMB. It is an outstanding fibre laser frequency comb that will enable the new communication paradigm based on Elastic Optical Networks (EONs) and Super-Channels.
One of the major challenges of photonics is to provide cost-effective technology to boost the broadband internet and allow current demands in terms of traffic growth, fast network changes and varying traffic. For that purpose, network architecture innovations are needed to get faster, more transparent, dynamic and greener broadband networks, providing super-channels to offer connectivity with a wide range of bandwidths, dynamic over both time and direction. In this context, optical fibre laser combs feeding EONs will fulfil requirements of future core networks.
LASERCOMB solution is a fibre laser frequency comb that will enable the new communication paradigm based on EONs and super-channels. It is an ultrafast GHz-rate pulsed optical fibre laser with better performance, flexible design and lower costs than the current state of the art solutions. Regarding flexibility, it is capable of generating a comb of multiple carriers (>1000) to feed multiple channels, offering wide flexibility in the fundamental frequency (1-25GHz) and bandwidth (1.5-20nm) of the carriers. Main advantages of LASERCOMB are: - High quality signals. - Multiple carriers generated from unique source (laser comb), providing coherence between carriers. - Long-term stable emission (hours and days of operation). - Robustness (increase life-time up to 5 times). - Reduce size and weight (at least 80%) - Reduce cost (50% compared to other comb lasers and 75% compared to current transceivers of diode arrays). - Enables multiprotocol technology to be used in optical networks but also in WIFI, Radio, ROF, Satellite, etc.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LASERCOMB" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "LASERCOMB" are provided by the European Opendata Portal: CORDIS opendata.