Explore the words cloud of the LRC project. It provides you a very rough idea of what is the project "LRC" about.
The following table provides information about the project.
Coordinator |
JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙999˙750 € |
EC max contribution | 1˙999˙750 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-COG |
Funding Scheme | ERC-COG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-06-01 to 2024-05-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | JOHANNES GUTENBERG-UNIVERSITAT MAINZ | DE (MAINZ) | coordinator | 1˙999˙750.00 |
This project aims at developing a novel method of optical spectroscopy to study the wholly unexplored atomic structure of the superheavy transition metals, starting with element 103, lawrencium (Lr). My team will experimentally identify optical spectral lines that will serve as fingerprints in the search for superheavy elements in the universe. The spectral lines are strongly influenced by relativistic and quantum electrodynamic effects and thus will constitute powerful benchmarks for atomic modeling incorporated within this project. Furthermore, since the nuclear charge distribution influences the atomic structure, our experimental data will advance our understanding of the effects of nuclear shells and deformations on the stability of radionuclides at the top of the Segré chart. While I recently opened up the atomic structure of element 102, nobelium, the new challenges faced are the refractory nature of the elements, which lay ahead, coupled with shorter half-lives and decreasing production yields. I propose to overcome these by developing an ultra-sensitive and fast Laser Resonance Chromatography (LRC) to set the new standard in optical spectroscopy. The LRC method combines the element selectivity and spectral precision of laser spectroscopy with cutting-edge technology of ion-mobility mass spectrometry. Based on high-accuracy atomic calculations, my team will optically probe the 1S0-3P1 ground-state transition in singly-charged 255Lr ions and record the distinct arrival times of the ions after passing a drift tube to identify the laser resonance signal. We will perform the experiments at leading in-flight facilities such as the GSI velocity filter SHIP and the new GANIL separator S3. Crucially, the LRC method will be insensitive to physicochemical properties and tolerant of the decreasing yields with increasing atomic number. This paves the way for atomic structure studies of the superheavy elements, in particular, those of refractory nature beyond lawrencium.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LRC" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "LRC" are provided by the European Opendata Portal: CORDIS opendata.