Opendata, web and dolomites

LIBED-PDs SIGNED

Light Induced Bipolar Electrochemical Doping in Perovskite Devices

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LIBED-PDs project word cloud

Explore the words cloud of the LIBED-PDs project. It provides you a very rough idea of what is the project "LIBED-PDs" about.

induce    layered    contact    transition    nanoparticle    explore    utilize    dimensional    electronic    solution    advantage    fabrication    semiconducting    bpe    multiple    industrial    fix    stack    techniques    bipolar    drop    perovskite    cross    electrochemistry    formed    electrolyte    routes    photothermal    lithography    effect    device    data    extremities    chip    degradation    photonic    layers    reactions    conductor    semiconductors    modifying    polymerization    conducting    technique    hold    post    optical    organic    place    expensive    cells    flexible    doping    lighting    electrode    lasers    single    3d    hard    performance    electrochemical    redox    demonstrated    emitting    temperature    patterns    fabricate    structure    implantation    photonics    ionic    electrolytes    doped    placed    lecs    assembly    film    driving    deposition    ion    self    solid    uniform    electrodes    2d    glass    dielectric    locally    materials    mixed    shown    sensing    surrounded    light    nanoparticles    electronics    manipulating    linking    fabricated    floating    planar    thin    films    mechanism    written   

Project "LIBED-PDs" data sheet

The following table provides information about the project.

Coordinator
FUNDACION IMDEA MATERIALES 

Organization address
address: CALLE ERIC KANDEL 2 PARQUE CIENTIFICO Y TECNOLOGICO TECNOGETAFE
city: GETAFE
postcode: 28906
website: www.materials.imdea.org

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 160˙932 €
 EC max contribution 160˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACION IMDEA MATERIALES ES (GETAFE) coordinator 160˙932.00

Map

 Project objective

Photonic and electronic devices are developed by manipulating the electronic structure of semiconductors and dielectric materials. Fabrication routes that utilize lithography, ion implantation, and self-assembly are expensive or hard to control. Ion-doped organic semiconducting films hold the potential for easy-to-fabricate single-layered devices via solution-based deposition techniques. Currently, flexible devices are fabricated as a stack of uniform thin films with single or multiple semiconducting layers. Modifying the two-dimensional (2D) electronics structure in each film allows for making complex three dimensional (3D) on-chip photonic and electronic devices. Solid-state bipolar electrochemistry was demonstrated in planar Light-emitting Electrochemical Cells (LECs). A conducting floating bipolar electrode (BPE) is placed between the driving electrodes were redox reactions take place driven by the potential drop at the BPE-extremities. Recently, light was shown to induce the same effect in the mixed (ionic-electronic) conducting films. Here, we propose to utilize this non-contact method to locally induce doping in perovskite nanoparticle photonic devices, aiming for two major finding. On one hand, we will take advantage of this optical technique to study degradation mechanism in perovskite nanoparticle surrounded by ionic electrolytes in order to identify the best electrolyte towards enhancing device performance. On the other hand, we will explore new 2D photonic patterns written in planar and flexible perovskite photonic devices. Methods to fix doping in the formed devices will be established. This includes post-doping polymerization or cross linking, as well as high-temperature glass transition ionic conductor along with photothermal nanoparticles. Success of this project will be of high interest for research and industrial applications in perovskite photonics focused on, for example, lighting, lasers sensing and data processing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIBED-PDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIBED-PDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More