Opendata, web and dolomites

RegRNA SIGNED

Mechanistic principles of regulation by small RNAs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RegRNA project word cloud

Explore the words cloud of the RegRNA project. It provides you a very rough idea of what is the project "RegRNA" about.

power    exposing    translation    transcription    ways    2400    base    site    versatile    suggest    advantage    implications    interfering    rho    srna    few    ribosome    regulating    post    transcriptome    direct    innovative    feasibility    network    trans    regulation    shed    seq    manipulate    rna    preliminary    assisting    technologies    termination    binding    pathogenic    latter    certain    exerting    mainly    biology    light    gene    pausing    synthetic    employs    rnase    map    basis    contexts    employed    perceived    revealing    small    regulators    rnas    cleavage    coli    pairing    function    integration    modes    detection    elongation    global    cellular    principles    pairs    blocking    vivo    dependent    intriguing    underlying    circuits    expression    transcriptional    deciphered    manipulation    regulatory    regulated    accumulating    escherichia    alluded    mechanism    circuitry    mature    examples    molecular    ril    alternative    bacteria    srnas    effect   

Project "RegRNA" data sheet

The following table provides information about the project.

Coordinator
THE HEBREW UNIVERSITY OF JERUSALEM 

Organization address
address: EDMOND J SAFRA CAMPUS GIVAT RAM
city: JERUSALEM
postcode: 91904
website: www.huji.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 2˙278˙125 €
 EC max contribution 2˙278˙125 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM IL (JERUSALEM) coordinator 2˙278˙125.00

Map

 Project objective

Small RNAs (sRNAs) are major regulators of gene expression in bacteria, exerting their regulation in trans by base pairing with target RNAs. Traditionally, sRNAs were considered post-transcriptional regulators, mainly regulating translation by blocking or exposing the ribosome binding site. However, accumulating evidence suggest that sRNAs can exploit the base pairing to manipulate their targets in different ways, assisting or interfering with various molecular processes involving the target RNA. Currently there are a few examples of these alternative regulation modes, but their extent and implications in the cellular circuitry have not been assessed. Here we propose to take advantage of the power of RNA-seq-based technologies to develop innovative approaches to address these challenges transcriptome-wide. These approaches will enable us to map the regulatory mechanism a sRNA employs per target through its effect on a certain molecular process. For feasibility we propose studying three processes: RNA cleavage by RNase E, pre-mature Rho-dependent transcription termination, and transcription elongation pausing. Finding targets regulated by sRNA manipulation of the two latter processes would be especially intriguing, as it would suggest that sRNAs can function as gene-specific transcription regulators (alluded to by our preliminary results). As a basis of our research we will use the network of ~2400 sRNA-target pairs in Escherichia coli, deciphered by RIL-seq (a method we recently developed for global in vivo detection of sRNA targets). Revealing the regulatory mechanism(s) employed per target will shed light on the principles underlying the integration of distinct sRNA regulation modes in specific regulatory circuits and cellular contexts, with direct implications to synthetic biology and pathogenic bacteria. Our study may change the way sRNAs are perceived, from post-transcriptional to versatile regulators that apply different regulation modes to different targets.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REGRNA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REGRNA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

TransReg (2019)

Transgenerational epigenetic inheritance of cardiac regenerative capacity in the zebrafish

Read More