Explore the words cloud of the LightAtLHC project. It provides you a very rough idea of what is the project "LightAtLHC" about.
The following table provides information about the project.
Coordinator |
JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙572˙500 € |
EC max contribution | 1˙572˙500 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-COG |
Funding Scheme | ERC-COG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-03-01 to 2025-02-28 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | JOHANNES GUTENBERG-UNIVERSITAT MAINZ | DE (MAINZ) | coordinator | 1˙572˙500.00 |
Axions and other very light axion-like particles (ALPs) appear in many extensions of the Standard Model and are well motivated theoretically: ALPs can solve the well-known strong CP problem, act as a dark matter candidate and could also explain the famous muon (g-2) discrepancy. The experimental effort to search for ALPs as dark matter candidates is ongoing and has been considerably intensified in recent years, leading to the proposal and construction of a wide range of dedicated experiments. However, none of these dedicated experiments is sensitive to those ALPs that can explain low-energy anomalies such as (g-2). I propose therefore to pioneer an alternative search strategy for axion-like particles via their decay into two photons, using data collected at the Large Hadron Collider. This approach requires fundamental innovations on the photon identification capabilities of the current detectors as well as radically new analysis strategies.
Within the LightAtLHC project, I will study proton-proton and lead-lead collisions, collected during LHC Run-3, and search for Higgs Boson decays in two ALPs as well as the direct production of ALPs via photon fusion and their subsequent decay into two low-energy photons. To achieve the required sensitivity, I will develop highly specialized photon reconstruction algorithms for the ATLAS detector. These efforts will largely cover the relevant parameter space, leaving out only a small region. To also close this gap, I will extend the upcoming FASER experiment at the LHC by an innovative presampler detector, which allows for an unambiguous ALPs detection. By the end of the LightAtLHC project, I can either rule out the most promising ALP models in a mass range from 10 MeV to 1 TeV, or discover a new elementary particle.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIGHTATLHC" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "LIGHTATLHC" are provided by the European Opendata Portal: CORDIS opendata.
Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read MoreCancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read More