Explore the words cloud of the SURE project. It provides you a very rough idea of what is the project "SURE" about.
The following table provides information about the project.
Coordinator |
DANMARKS TEKNISKE UNIVERSITET
Organization address contact info |
Coordinator Country | Denmark [DK] |
Total cost | 9˙980˙899 € |
EC max contribution | 9˙980˙899 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-SyG |
Funding Scheme | ERC-SyG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-03-01 to 2026-02-28 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | DANMARKS TEKNISKE UNIVERSITET | DK (KGS LYNGBY) | coordinator | 7˙384˙019.00 |
2 | REGION HOVEDSTADEN | DK (HILLEROD) | participant | 1˙431˙565.00 |
3 | KOBENHAVNS UNIVERSITET | DK (KOBENHAVN) | participant | 1˙165˙315.00 |
'The SURE project: 'Super resolution Ultrasound Real time imaging of Erythrocytes' will develop and research a new super resolution ultrasound imaging method capable of resolving capillary flow in the human body. The approach tracks the motion of the individual red blood cells (erythrocytes) in a three-dimensional volume for a full visualization of anatomy, flow, and perfusion in a volume down to 13 cm at 20 volumes per second. The super resolution imaging is performed without using contrast agents and is thereby 2600 times faster than current methods. The method has an isotropic resolution of 50 micrometer in all directions, and the volumetric resolution is thereby 100-400 times better than current state-of-the-art 3-D ultrasound imaging. These highly ambitious goals are attained in a synergistic research effort combing four research groups. The scientific project includes breakthroughs in silicon row-column probes with 1 million elements, advanced synthetic aperture ultrafast coded imaging, deep learning for detecting and tracking of cells, pressure gradient estimation, and visualization and quantification of several hundreds of Gbytes volumetric data. The research finally leads to clinical trials conducted on rodents and humans for studying the changes in perfusion for diabetes and cancer. The SURE imaging approach can yield a paradigm shift in the scientific study, diagnoses, and treatment of cancer, diabetes, and vascular disease at the capillary level, as it enables the possibility of volumetric visualizing capillary perfusion in real-time at frame rates above 20 Hz without injection of contrast agents. Imaging is performed using ultrasound at normal diagnostic levels with no known adverse effects and can, thus, be used on a wide range of the population from newborns to the elderly for both diagnosis and repeated screening.'
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SURE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SURE" are provided by the European Opendata Portal: CORDIS opendata.
Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read MoreConstraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read More