Explore the words cloud of the APPLICAL project. It provides you a very rough idea of what is the project "APPLICAL" about.
The following table provides information about the project.
Coordinator |
HELSINGIN YLIOPISTO
Organization address contact info |
Coordinator Country | Finland [FI] |
Total cost | 0 € |
EC max contribution | 150˙000 € (0%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-PoC |
Funding Scheme | ERC-POC-LS |
Starting year | 2020 |
Duration (year-month-day) | from 2020-04-01 to 2021-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | HELSINGIN YLIOPISTO | FI (HELSINGIN YLIOPISTO) | coordinator | 150˙000.00 |
BioBiorefineries are facing a positive economic outlook due to the ever-growing concerns for climate change, which is triggering demand towards carbon neutral materials and energy derived from renewable sources. However, the growth of the industry is hampered by their low profit margins and additional investments and innovations are needed to improve process efficiency. The key problem in migrating towards green production is the biomass recalcitrance, which is known to be a major bottleneck in the lignocellulosic biomass conversion process. The initial steps common to several biorefinery process pipelines, the extraction and sugar conversion process (saccharification), can account to as much as 40-45% of the process costs. Therefore, biorefineries can achieve extensive economic impact by addressing this part of their process through a simple business development effort. We recently made a breakthrough and obtained a biomass less recalcitrant to bioconversion into fermentable sugars. Results show that introduction of only 5% Callose in genetically modified poplars led to 90% more fermentable sugars released during saccharification experiments without any growth penalty, a frequent drawback for such innovations. In practice, this proposes added value to biorefineries through decreased raw material intake, improved throughput and improved yield. For instance, bioethanol production could expect a linear throughput increase (in the 50-90% range) with the same material intake. Moreover, the more manageable pretreatment process will also experience improved energy efficiency. In the PoC we will carry out technical proof-of-concept and commercialisation planning activities to improve the maturity, and bringing our patented innovation closer to the markets with applications ranging from biofuels, advanced materials and bioplastics to specialty chemicals. Our initial goal is to start industrial scale trials in 5 years time and achieve substantial market penetration by 2035.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "APPLICAL" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "APPLICAL" are provided by the European Opendata Portal: CORDIS opendata.