RADIOPHARM METAL ISO

New chemical platforms for targeted radiopharmaceuticals based on generator-produced metal isotopes

 Coordinatore KING'S COLLEGE LONDON 

 Organization address address: Strand
city: LONDON
postcode: WC2R 2LS

contact info
Titolo: Mr.
Nome: Daniel
Cognome: Walker
Email: send email
Telefono: +44 2 078486509

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 209˙033 €
 EC contributo 209˙033 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2015-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KING'S COLLEGE LONDON

 Organization address address: Strand
city: LONDON
postcode: WC2R 2LS

contact info
Titolo: Mr.
Nome: Daniel
Cognome: Walker
Email: send email
Telefono: +44 2 078486509

UK (LONDON) coordinator 209˙033.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

agent    platforms    radiochemical    tc    generator    multivalent       isotopes    diagnosis    vivo    ga    group    amsh    radiometal    re    chelating   

 Obiettivo del progetto (Objective)

'Targeted radiopharmaceuticals for diagnosis and therapy are important in the development of a personalised medicinal approach in oncology. The radiometal isotopes, Ga-68, Tc-99m and Re-188 are particularly useful as they are sourced from a generator and their decay properties are amenable to PET diagnosis, SPECT diagnosis and radiotherapy respectively. This project aims to develop new radiochemical platforms for these isotopes, expanding their utility in nuclear medicine. For Tc-99m and Re-188, multivalent bifunctional chelators will be synthesised, which will be conjugated to the bone cancer targeting group, bisphosphonate, or an analogue of the melanoma targeted peptide, alpha-melanocyte stimulating hormone (aMSH). The new radiolabeled tetravalent compounds will be assessed for targeting efficacy using in vitro and in vivo models. Furthermore, in vivo experiments will determine whether any enhanced tumour accumulation for aMSH-derived multivalent tracers radiotracers (relative to analogues of lower valency) is truly a multivalent effect or a result of prolonged bioavailability. In the case of Ga-68, a novel pretargeting, “reverse-multivalent” approach will be developed, with the aim of decreasing radiation present in non-target organs. This requires multiple copies of a chelating group to be attached to a targeting agent, in this case, an aMSH analogue. This unlabelled agent will bind to the target receptor in vivo prior to injection of a Ga-68 formulation. Complexation of the radiometal at the in vivo target site will be achieved through incorporation of a chelating group that demonstrates high affinity and rapid binding for Ga3. These new radiochemical platforms for generator-produced isotopes will be developed with a view to clinical translation in the multidisciplinary environment at the Division of Imaging Sciences, King’s College London.'

Altri progetti dello stesso programma (FP7-PEOPLE)

AVATAR (2014)

Animated 3D digital reconstructions of early European birds: a new window on the origin of avian flight using “state-of-the-art” techniques on exceptional fossils

Read More  

RUNMORE (2013)

Run-time Model Projections for Software Failure Prediction

Read More  

TEMM1P (2012)

Computer simulations of thermally excited molecules and materials by first principles

Read More