GAUGE/GRAVITY

The Gauge/Gravity Duality and Geometry in String Theory

 Coordinatore KING'S COLLEGE LONDON 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙253˙098 €
 EC contributo 1˙253˙098 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-01-01   -   2017-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KING'S COLLEGE LONDON

 Organization address address: Strand
city: LONDON
postcode: WC2R 2LS

contact info
Titolo: Dr.
Nome: Dario
Cognome: Martelli
Email: send email
Telefono: +44 20 7848 2153
Fax: +44 (0) 20 7848 2017

UK (LONDON) hostInstitution 1˙253˙098.00
2    KING'S COLLEGE LONDON

 Organization address address: Strand
city: LONDON
postcode: WC2R 2LS

contact info
Titolo: Dr.
Nome: Paul
Cognome: Labbett
Email: send email
Telefono: 442078000000
Fax: 442078000000

UK (LONDON) hostInstitution 1˙253˙098.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

correspondence    string    physics    theory    space    forces    gauge    einstein    ads    gravity    arising    theories    quantum    directions    exploring    duality    cft   

 Obiettivo del progetto (Objective)

'While the three sub-atomic forces are described by quantum mechanics, the fourth known force, gravity, is described by Einstein's theory of general relativity. These two very successful theories are incompatible, and understanding how to unify them in a single framework is an outstanding problem. String theory is the most prominent candidate for a unified theory of all forces of Nature. The most important conceptual breakthrough that emerged from string theory is Maldacena's conjectured duality between quantum field theory and gravity, known as AdS/CFT correspondence. This states that strings moving in anti-de Sitter (AdS) space-time, may equivalently be described by a type of quantum theory, called conformal field theory (CFT). More generally, it is a remarkable duality between quantum gauge theories in d dimensions and gravitational theories in (d1)-dimensional space-times, implying that quantum theory and gravity, instead of being conflicting, are in fact equivalent. In this project I will aim at extending the gauge/gravity duality in multiple directions, which go beyond the current state of the art. In order to achieve a deeper understanding of the gauge/gravity duality I plan to develop novel mathematical approaches, that are likely to lead to new research directions in different areas of physics and mathematics. More specifically, the objectives of this project include: a systematic study of AdS backgrounds arising in string theory as a method for exploring CFTs; the development of geometric structures, such as generalised Sasaki-Einstein geometry, relevant for the AdS/CFT correspondence; a study of supersymmetric gauge theories on curved manifolds and of their gravity duals; a study of dualities between pairs of gauge theories and of related matrix models arising from localisation techniques; exploring the gauge/gravity duality as a tool for studying strongly interacting quantum critical phenomena, such as those that are of interest to real-world physics.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DREAMS (2013)

Development of a Research Environment for Advanced Modelling of Soft matter

Read More  

ENMUH (2010)

Estimation of Nonlinear Models with Unobserved Heterogeneity

Read More  

DARK (2014)

Dark matter of the human transcriptome: Functional study of the antisense Long Noncoding RNAs and Molecular Mechanisms of Action

Read More