HAMPDES

Hamiltonian PDE's and small divisor problems: a dynamical systems approach

 Coordinatore UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Italy [IT]
 Totale costo 678˙000 €
 EC contributo 678˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-11-01   -   2017-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II.

 Organization address address: Corso Umberto I 40
city: NAPOLI
postcode: 80138

contact info
Titolo: Ms.
Nome: Immacolata
Cognome: Diez
Email: send email
Telefono: +39 81 65720

IT (NAPOLI) beneficiary 279˙600.00
2    UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA

 Organization address address: Piazzale Aldo Moro 5
city: ROMA
postcode: 185

contact info
Titolo: Dr.
Nome: Michela
Cognome: Procesi
Email: send email
Telefono: +39 6 49913249

IT (ROMA) hostInstitution 398˙400.00
3    UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA

 Organization address address: Piazzale Aldo Moro 5
city: ROMA
postcode: 185

contact info
Titolo: Ms.
Nome: Maria Rita
Cognome: Ullucci
Email: send email
Telefono: +39 6 49923273
Fax: +39 6 49913275

IT (ROMA) hostInstitution 398˙400.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

equations    differential    quasi    dynamical    normal    hamiltonian    dimensional    periodic    fundamental    resonant    linearity    wave    questions    solutions    hydrodynamics    equation    integrable    linear   

 Obiettivo del progetto (Objective)

'A large number of partial differential equations of Physics have the structure of an infinite-dimensional Hamiltonian dynamical system. In this class of equations appear, among others, the Schrödinger equation (NLS), the wave equation (NLW), the Euler equations of hydrodynamics and the numerous models that derive from it. The study of these equations poses some fundamental questions that have inspired an entire research field in the last twenty years: the investigation of the main invariant structures of the phase space of a Hamiltonian system, starting from its stationary, periodic and quasi-periodic orbits. As in the case of finite-dimensional dynamical systems, one of the main problems in this field is linked to the well-known 'small divisors problem'. A further difficulty is due to the fact that 'physically' interesting equations, without outer parameters, are typically resonant and/or contain derivatives in the non-linearity. There are many fundamental open questions in this field. Our main goals are 1) the study of quasi-periodic solutions, in particular for semi-linear and quasi-linear equations. 2)Study of normal forms, both in integrable and non-integrable cases. 3) Applications to hydrodynamics and search of quasi-periodic solutions in water wave problems.4) Study of almost periodic solutions for nonlinear PDEs. 5) quasi-periodic solutions for resonant systems with minimal restrictions on the non-linearity. Together with my group in Naples we already have developed several techniques to approach these problems and we have several ideas of possible innovative approaches, combining Nash-Moser and KAM methods, Normal Form Theory, Para-differential calculus, combinatorial methods.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DEEP (2009)

Deep Earth Elastic Properties and a Universal Pressure Scale

Read More  

SYNTHPHOTO (2014)

Powering cells with light: the synthetic biology of photosynthesis

Read More  

NANO-TEC (2010)

Nano-engineered high performance Thermoelectric Energy Conversion devices

Read More