STOMAMOTOR

Stomatocyte Nanomotors: Programmed Supramolecular Architectures for Autonomous Movement

 Coordinatore STICHTING KATHOLIEKE UNIVERSITEIT 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    STICHTING KATHOLIEKE UNIVERSITEIT

 Organization address address: GEERT GROOTEPLEIN NOORD 9
city: NIJMEGEN
postcode: 6525 EZ

contact info
Titolo: Dr.
Nome: Daniela
Cognome: Wilson
Email: send email
Telefono: +31 2 43653118
Fax: 31243653118

NL (NIJMEGEN) hostInstitution 1˙500˙000.00
2    STICHTING KATHOLIEKE UNIVERSITEIT

 Organization address address: GEERT GROOTEPLEIN NOORD 9
city: NIJMEGEN
postcode: 6525 EZ

contact info
Titolo: Ms.
Nome: A.A
Cognome: Den Hollander
Email: send email
Telefono: +31 2 43652709

NL (NIJMEGEN) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

shape    active    copolymers    movement    loaded    peroxide    block    surface    motor    recognition    hydrogen    amphiphilic    nanoparticles    catalytically    particles    stomatocytes    stomatocyte    generate    loading    supramolecular    nanoreactor    engine    stable    suitable    opening    entrapped    catalytic   

 Obiettivo del progetto (Objective)

'The main goal of this ERC proposal is to harness a completely new approach to constructing biocompatible nanomotors, using supramolecular assembly of amphiphilic block-copolymers for loading the engine and catalysis as the driving force for autonomous movement. Polymersomes assembled from amphiphilic block copolymers can be further re-engineered to perform a controlled shape transformation from a thermodynamically stable spherical morphology to a kinetically trapped stomatocyte structure with controlled opening. These stable structures can selectively entrap catalytically active nanoparticles within their nanocavity making their design ideal for nanoreactor applications. The decomposition of hydrogen peroxide by an entrapped catalyst has been shown to generate a rapid discharge of gases and consequently generate thrust and directional movement. The design of the loaded stomatocytes is a truly miniature monopropellant rocket engine in which the catalytically active nanoparticles are the motor, the hydrogen peroxide is the propellant and the controlled opening of the stomatocyte is the nozzle. Their unique shape allows for added capabilities, extra compartmentalization for loading efficiency, polymeric PEG surface for biocompatibility and entrapped particles for catalytic activity. The supramolecular approach to assembling the motor allows facile alteration of its constituent parts: motor, fuel and cargo to make it more suitable for biological applications (type of catalytic particles, surface modification for cellular uptake or suitable biofuels). The appropriate design of the motor with recognition sites on the surface can facilitate the recognition, isolation and transport of specific type of cells, or can navigate the payloads within the cell via chemotaxis. Besides their initial role to overcome random diffusion, these “ship-in-a-bottle” loaded stomatocytes open interesting possibilities for designing new targeted drug delivery and nanoreactor systems.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

3SPIN (2010)

Three Dimensional Spintronics

Read More  

ADREEM (2014)

Adding Another Dimension – Arrays of 3D Bio-Responsive Materials

Read More  

MOMP (2011)

Structural Biology of Mitochondrial Outer Membrane Proteins

Read More